Искусственный интеллект, инженерия данных и знаний. Рубрика в журнале - Информатика и автоматизация (Труды СПИИРАН)
![Классификация болезней листьев яблони с использованием набора данных изображений: подход многослойной сверточной нейронной сети Классификация болезней листьев яблони с использованием набора данных изображений: подход многослойной сверточной нейронной сети](/file/thumb/14127392/klassifikacija-boleznej-listev-jabloni-s-ispolzovaniem-nabora-dannyh.png)
Статья
Сельское хозяйство является одним из основных источников экономического роста в России; мировое производство яблок в 2019 году составило 87 миллионов тонн. Болезни листьев яблони являются основной причиной ежегодного сокращения производства яблок, что приводит к огромным экономическим потерям. Автоматизированные методы выявления болезней листьев яблони позволяют сократить трудоемкую работу по мониторингу яблоневых садов и раннему выявлению симптомов болезни. В этой статье предложена многослойная сверточная нейронная сеть (MCNN), которая способна классифицировать листья яблони по одной из следующих категорий: парша яблони, черная гниль и болезни яблоневой кедровой ржавчины, используя недавно созданный набор данных. В этом методе мы использовали методы аффинного преобразования и перспективного преобразования для увеличения размера набора данных. После этого операции предварительной обработки на основе метода кадрирования и выравнивания гистограммы OpenCV использовались для улучшения предлагаемого набора данных изображения. Экспериментальные результаты показывают, что система достигает точности обучения 98,40% и точности проверки 98,47% для предложенного набора данных изображения с меньшим количеством параметров обучения. Результаты предполагают более высокую точность классификации предложенной модели MCNN по сравнению с другими известными современными подходами. Эта предложенная модель может использоваться для обнаружения и классификации других типов болезней яблони из разных наборов данных изображений.
Бесплатно
![Кластеризация сетей с использованием алгоритма поиска косяков рыб Кластеризация сетей с использованием алгоритма поиска косяков рыб](/file/thumb/14130334/klasterizacija-setej-s-ispolzovaniem-algoritma-poiska-kosjakov-ryb.png)
Кластеризация сетей с использованием алгоритма поиска косяков рыб
Статья
Сеть представляет собой совокупность узлов, соединенных ребрами, которые представляют сущности и их взаимосвязи. В кластеризации социальных сетей узлы организованы в кластеры в соответствии с их шаблонами соединений с целью обнаружения сообществ. Выявление структур сообществ в сетях является важным. Однако существующие методы обнаружения сообществ еще не использовали потенциал алгоритма поиска косяков рыб (FSS) и принципов модулярности. Мы предложили новый метод, основанный на кластеризации с использованием алгоритма поиска рыбной школы и функции модулярности (FSC), который улучшает модулярность в кластеризации сети путем итерационного разбиения сети и оптимизации функции модулярности. Этот подход облегчает обнаружение высокомодулярных структур сообществ, улучшая разрешение и эффективность кластеризации сети. Мы протестировали FSC на известных и неизвестных структурах сетей. Также мы протестировали его на сети, сгенерированной с использованием модели LFR, чтобы проверить его производительность на сетях с различными структурами сообществ. Наша методология демонстрирует высокую эффективность в выявлении структур сообществ, что указывает на ее способность эффективно захватывать сплоченные сообщества и точно определять фактические структуры сообществ.
Бесплатно
![Комбинированный метод извлечения терминов для задачи мониторинга тематических обсуждений в социальных медиа Комбинированный метод извлечения терминов для задачи мониторинга тематических обсуждений в социальных медиа](/file/thumb/14130018/kombinirovannyj-metod-izvlechenija-terminov-dlja-zadachi-monitoringa.png)
Статья
Извлечение терминов является важным этапом автоматизированного построения систем знаний на основе естественно-языковых текстов, поскольку обеспечивает формирование базовой системы понятий, используемой затем в прикладных задачах интеллектуальной обработки информации. В статье рассмотрена проблема автоматизированного извлечения терминов из естественно-языковых текстов с целью их дальнейшего использования при построении формализованных систем знаний (онтологий, тезаурусов, графов знаний) в рамках задачи мониторинга тематических обсуждений в социальных медиа. Данная задача характеризуется необходимостью включения в формируемую систему знаний как понятий из нескольких различных предметных областей, так и некоторых общеупотребительных понятий, используемых аудиторией социальных медиа в рамках тематических обсуждений. Кроме того, формируемая система знаний является динамичной как с точки зрения состава охватываемых ею предметных областей, так и состава релевантных понятий, подлежащих включению в систему. Применение существующих классических методов извлечения терминов в данном случае затруднительно, поскольку они ориентированы на извлечение терминов в рамках одной предметной области. Исходя из этого, для решения рассматриваемой задачи предложен комбинированный метод, совмещающий в себе подходы на основе внешних источников знаний, инструментов NER и правил. Результаты проведенных экспериментов демонстрируют эффективность предложенной комбинации подходов к извлечению терминов для задачи мониторинга и анализа тематических обсуждений в социальных медиа. Разработанный метод значительно превосходит по точности существующие инструменты извлечения терминов. В качестве дальнейшего направления исследования рассмотрена возможность развития метода для решения задачи выделения вложенных терминов или сущностей.
Бесплатно
![Контекстно-управляемый подход к интеллектуальной поддержке принятия решений на основе цифровых следов пользователей Контекстно-управляемый подход к интеллектуальной поддержке принятия решений на основе цифровых следов пользователей](/file/thumb/14127290/kontekstno-upravljaemyj-podhod-k-intellektualnoj-podderzhke-prinjatija-reshenij.png)
Статья
Разрабатывается контекстно-управляемый подход к интеллектуальной поддержке принятия решений на основе цифровых следов пользователей. Рассматриваются вопросы использования концепции жизни человека в цифровой среде при интеллектуальной поддержке принятия решений. Исследуются цели обращения к цифровым следам человека в различных проблемных областях и выявляются подходы к моделированию жизни человека в цифровой среде. Предлагается подход к интеллектуальной поддержке принятия решений, в котором цифровые следы служат источником информации для выявления предпочтений пользователей и их поведения при принятии решений. Развиваются взгляды на поддержку принятия решений на основе учета следов пользователей в цифровой среде. Результатами исследования являются спецификация требований к интеллектуальной поддержке принятия решений на основе цифровых следов пользователя, принципы, концептуальная и информационная модели такой поддержки.
Бесплатно
![Концепция обработки, анализа и визуализации геофизических данных на основе элементов тензорного исчисления Концепция обработки, анализа и визуализации геофизических данных на основе элементов тензорного исчисления](/file/thumb/14129176/koncepcija-obrabotki-analiza-i-vizualizacii-geofizicheskih-dannyh-na-osnove.png)
Статья
Одним из основных подходов к обработке, анализу и визуализации геофизических данных является применение геоинформационных систем и технологий, что обусловлено их геопространственной привязкой. Вместе с тем, сложность представления геофизических данных связана с их комплексной структурой, предполагающей множество составляющих, которые имеют одну и ту же геопространственную привязку. Яркими примерами данных такой структуры и формата являются гравитационные и геомагнитные поля, которые в общем случае задаются трех и четырехкомпонентными векторами с разнонаправленными осями координат. При этом на сегодняшний день отсутствуют решения, позволяющие визуализировать указанные данные в комплексе, не декомпозируя их на отдельные скалярные значения, которые, в свою очередь, могут быть представлены в виде одного или многих пространственных слоев. В этой связи в работе предложена концепция, использующая элементы тензорного исчисления для обработки, хранения и визуализации информации такого формата. Формализован механизм тензорного представления компонент поля с возможностью его комбинирования с другими данными такого же формата, с одной стороны, и свертки при сочетании с данными более низкого ранга. На примере гибридной реляционно-иерархической модели данных предложен механизм хранения информации по тензорным полям, предусматривающий возможность описания и применения инструкций по трансформации при переходе между различными системами координат. В работе рассматривается применение подхода при переходе от декартовой к сферической системе координат при представлении параметров геомагнитного поля. Для комплексной визуализации параметров тензорного поля предложен подход, основанный на применении тензорных глифов. В качестве последних при этом используются суперэллипсы с осями, соответствующими рангу тензора. При этом атрибутивные значения предлагается визуализировать относительно осей графического примитива таким образом, что распределение данных может быть задано посредством варьирования градиента монохромного представления параметра вдоль оси. Работоспособность концепции была исследована в ходе сравнительного анализа тензорного подхода с решениями, основанными на скалярной декомпозиции соответствующих комплексных значений с последующим их представлением в виде одного или многих пространственных слоев. Проведенный анализ показал, что применение предложенного подхода позволит в значительной степени повысить наглядность формируемого геопространственного изображения без необходимости сложного перекрывания пространственных слоев.
Бесплатно
![Концепция построения коллаборативных систем поддержки принятия решений: подход и архитектура платформы Концепция построения коллаборативных систем поддержки принятия решений: подход и архитектура платформы](/file/thumb/14130019/koncepcija-postroenija-kollaborativnyh-sistem-podderzhki-prinjatija-reshenij.png)
Статья
В статье описывается общая концепция построения коллаборативных систем поддержки принятия решений, в которых коллективы, осуществляющие поддержку принятия решений, а) формируются гибко в соответствии с задачей и б)состоят как из людей-экспертов, так и из интеллектуальных агентов, реализующих те или иные методы искусственного интеллекта. Проводится анализ ключевых проблем создания коллаборативных систем поддержки принятия решений, основанных на взаимодействии человека и искусственного интеллекта. В частности, выделены следующие проблемы: обеспечение интероперабельности (взаимопонимания) между разнородными участниками коллектива, согласование различающихся позиций участников, обеспечение доверия между участниками, обеспечение эффективности планирования совместных действий и соблюдение баланса между предопределенными потоками работ и самоорганизацией. Сформированы принципы построения подобных систем, предлагающие решения выделенных проблем. В частности, предлагается онтолого-ориентированное представление информации о проблеме (в частности, применение мультиаспектных онтологий), набор методов для мониторинга деятельности команды, схема репутации, элементы объяснимого искусственного интеллекта, а также применение механизма ограниченной самоорганизации. Предложенная концепция положена в основу программной платформы для создания коллаборативных систем поддержки принятия решений, основные архитектурные положения которой также представлены в статье. Применение платформы иллюстрируется на примере из области рационального управления дорожной инфраструктурой и создания коллаборативной системы поддержки принятия решений для разработки мероприятий по снижению аварийности.
Бесплатно
![Машинное обучение в задачах base-calling для методов секвенирования нового поколения Машинное обучение в задачах base-calling для методов секвенирования нового поколения](/file/thumb/14127386/mashinnoe-obuchenie-v-zadachah-base-calling-dlja-metodov-sekvenirovanija-novogo.png)
Машинное обучение в задачах base-calling для методов секвенирования нового поколения
Статья
Развитие технологий секвенирования следующего поколения (NGS) внесло существенный вклад в тенденции снижения затрат и получения массивных данных секвенирования. В Институте аналитического приборостроения РАН разрабатывается аппаратно-программный комплекс (АПК) для расшифровки последовательности нуклеиновых кислот методом массового параллельного секвенирования (Нанофор СПС). Алгоритмы обработки изображений, входящие в состав АПК, играют существенную роль в решении задач расшифровки генома. Финальной частью такого предварительного анализа сырых данных является процесс base-calling. Base-calling — это процесс определения нуклеотидного основания, которое генерирует соответствующее значение интенсивности в каналах флуоресценции для различных длин волн на кадрах изображения проточной ячейки для различных циклов секвенирования методом синтеза. Приведен обширный анализ различных подходов к решению задач base-calling и сводка распространенных процедур, доступных для платформы Illumina. Рассмотрены различные химические процессы, включенные в технологию секвенирования методом синтеза, вызывающие смещения в значениях регистрируемых интенсивностей, включая эффекты фазирование / префазирование (phasing/prephasing), затухания сигнала (signal decay) и перекрестные помехи (cross-talk). Определена обобщённая модель, в рамках которой рассматриваются возможные реализации. Рассмотрены возможные подходы машинного обучения (machine learning) для создания и оценки моделей, реализующих этап обработки base-calling. Подходы ML принимают различные формы, включая обучение без учителя (unsupervised), обучение с ча-стичным привлечением учителя (semi-supervised), обучение с учителем (supervised). В работе показана возможность применения различных алгоритмов машинного обучения на основе платформы Scikit-learn. Отдельной важной задачей является оптимальное выделение признаков, выделенных в обнаруженных кластерах на проточной ячейке для машинного обучения. Наконец, на ряде данных секвенирования для приборов MiSeq Illumina и Нанофор СПС показана перспективность метода машинного обучения для решения задачи base-calling.
Бесплатно
![Метод векторизации спутниковых снимков на основе их разложения по топологическим особенностям Метод векторизации спутниковых снимков на основе их разложения по топологическим особенностям](/file/thumb/14127423/metod-vektorizacii-sputnikovyh-snimkov-na-osnove-ih-razlozhenija-po.png)
Метод векторизации спутниковых снимков на основе их разложения по топологическим особенностям
Статья
Получение из растрового изображения объектов в векторном виде необходимо во многих сферах. Существующие методы векторизации спутниковых снимков не обеспечивают нужной точности автоматизации. В данной области требуется применять ручной труд, но объём поступающей информации зачастую превышает скорость обработки. Поэтому необходимы новые подходы для решения подобного рода задач. В статье предложен метод векторизации объектов на снимках с использованием разложения изображения на топологические особенности, который разбивает изображение на отдельные связанные структуры и при дальнейшей работе опирается уже на них. В результате уже на этом этапе изображение разбивается на древовидную структуру. Данный метод уникален по своему образу работы и в корне отличается от традиционных способов векторизации снимков. Большинство методов работает с помощью пороговой бинаризации, и основной задачей для них становится подбор порогового коэффициента. Главной проблемой в таком случае становится ситуация, когда на изображении имеется несколько объектов, для которых необходим разный порог. Метод отходит от непосредственной работы с яркостной характеристикой в сторону анализа топологической структуры каждого объекта. Предлагаемый метод имеет корректное математическое обоснование, в основе которого лежит алгебраическая топология. На основе метода разработана геоинформационная технология для автоматической векторизации растровых снимков с целью поиска находящихся на нем объектов. Тестирование проводилось на спутниковых снимках с разных масштабов. Разработанный метод сравнивался со специальным инструментом для векторизации R2V и превзошел его по средней точности. Средний процент у автоматической векторизации предложенного метода составил 81%, а у полуавтоматического векторизующего модуля R2V – 73%.
Бесплатно
![Метод интеллектуальной локализации взгляда на основе анализа ЭЭГ с использованием носимой головной повязки Метод интеллектуальной локализации взгляда на основе анализа ЭЭГ с использованием носимой головной повязки](/file/thumb/14129174/metod-intellektualnoj-lokalizacii-vzgljada-na-osnove-analiza-jejeg-s.png)
Статья
В стремительно развивающейся цифровой эпохе интерфейсы человеко-машинного взаимодействия непрерывно совершенствуется. Традиционные методы взаимодействия с компьютером, такие как мышь и клавиатура, дополняются и даже заменяются более интуитивными способами, которые включают технологии отслеживания глаз. Обычные методы отслеживания глаз используют камеры, которые отслеживают направление взгляда, но имеют свои ограничения. Альтернативным и многообещающим подходом к отслеживанию глаз является использование электроэнцефалографии, техники измерения активности мозга. Исторически ЭЭГ была ограничена в основном лабораторными условиями. Однако мобильные и доступные устройства для ЭЭГ появляются на рынке, предлагая более универсальное и эффективное средство для регистрации биопотенциалов. В данной статье представлен метод локализации взгляда с использованием электроэнцефалографии, полученной с помощью мобильного регистратора ЭЭГ в виде носимой головной повязки (компании BrainBit). Это исследование направлено на декодирование нейрональных паттернов, связанных с разными направлениями взгляда, с использованием продвинутых методов машинного обучения, в частности, нейронных сетей. Поиск паттернов выполняется как с использованием данных, полученных с помощью носимых очков с камерой для отслеживания глаз, так и с использованием неразмеченных данных. Полученные в исследовании результаты демонстрируют наличие зависимости между движением глаз и ЭЭГ, которая может быть описана и распознана с помощью предсказательной модели. Данная интеграция мобильной технологии ЭЭГ с методами отслеживания глаз предлагает портативное и удобное решение, которое может быть применено в различных областях, включающих медицинские исследования и разработку более интуитивных компьютерных интерфейсов.
Бесплатно
![Метод распознавания сентимента и эмоций в транскрипциях русскоязычной речи с использованием машинного перевода Метод распознавания сентимента и эмоций в транскрипциях русскоязычной речи с использованием машинного перевода](/file/thumb/14130020/metod-raspoznavanija-sentimenta-i-jemocij-v-transkripcijah-russkojazychnoj-rechi.png)
Статья
В статье рассматривается проблема распознавания сентимента и эмоций пользователей в русскоязычных текстовых транскрипциях речи с использованием словарных методов и машинного перевода. Количество имеющихся информационных ресурсов для анализа сентимента текстовых сообщений на русском языке очень ограничено, что существенно затрудняет применение базовых методов анализа сентимента, а именно, предобработки текстов, векторизации с помощью тональных словарей, традиционных классификаторов. Для решения этой проблемы в статье вводится новый метод на основе автоматического машинного перевода русскоязычных текстов на английский язык. Частичный перевод предполагает перевод отдельных лексем, не включенных в русскоязычные тональные словари, тогда как полный перевод подразумевает перевод всего текста целиком. Переведенный текст анализируется с использованием различных англоязычных тональных словарей. Экспериментальные исследования для решения задачи распознавания сентимента и эмоций были проведены на текстовых транскрипциях многомодального русскоязычного корпуса RAMAS, извлеченных из аудиоданных экспертным путем и автоматически с использованием системы распознавания речи. В результате применения методов машинного перевода достигается значение взвешенной F-меры распознавания семи классов эмоций 31,12 % и 23,74 %, и трех классов сентимента 75,37 % и 71,60 % для экспертных и автоматических транскрипций русскоязычной речи корпуса RAMAS, соответственно. Также в ходе экспериментов было выявлено, что использование статистических векторов в качестве метода преобразования текстовых данных позволяет достичь значение показателя взвешенной F-меры на 1-5 % выше по сравнению с использованием конкатенированного (статистического и тонального) вектора. Таким образом, эксперименты показывают, что объединение всех англоязычных тональных словарей позволяет повысить точность распознавания сентимента и эмоций в текстовых данных. В статье также исследуется корреляция между длиной вектора текстовых данных и его репрезентативностью. По результатам экспериментов можно сделать вывод, что использование лемматизации для нормализации слов текстовых транскрипций речи позволяет достичь большей точности распознавания сентимента по сравнению со стеммингом. Использование предложенных методов с полным и частичным машинным переводом позволяет повысить точность распознавания сентимента и эмоций на 0,65–9,76 % по показателю взвешенной F-меры по сравнению с базовым методом распознавания сентимента и эмоций.
Бесплатно
![Метод расчета коэффициентов компетентности участников группового принятия решений для выбора наилучшей альтернативы при мультивариантности результата Метод расчета коэффициентов компетентности участников группового принятия решений для выбора наилучшей альтернативы при мультивариантности результата](/file/thumb/14128711/metod-rascheta-kojefficientov-kompetentnosti-uchastnikov-gruppovogo-prinjatija.png)
Статья
В работе рассматривается проблема получения наилучшей альтернативы с помощью методов принятия решений, основанных на опыте специалиста и математических расчетов. Для решения данной проблемы подходит групповое принятие решений, однако оно может привести к выбору нескольких наилучших альтернатив (мультивариантности результата). Учет компетентности позволит отдать приоритет решению более компетентных участников и устранить возникновение нескольких наилучших альтернатив в процессе группового принятия решений. Сформулирована задача определения коэффициентов компетентности для участников группового принятия решений, которые обеспечивают выбор наилучшей альтернативы при мультивариантности результата. Разработан метод решения поставленной задачи, который включает в себя дискретизацию диапазона изменения входных переменных и уточнение в нем значений коэффициентов компетентности участников группового принятия решений. Уточнение выполняется с использованием либо мажоритарного принципа, либо с помощью лица, принимающего решение. Последующее вычисление коэффициентов компетентности для участников группового принятия решений осуществляется при помощи локальной линейной интерполяции уточненного коэффициента компетентности в окружающих точках из дискретизированного диапазона. Использование предложенного метода решения поставленной задачи рассмотрено на примере группового принятия решений по основным разновидностям мажоритарного принципа для выбора варианта технологического процесса нанесения гальванического покрытия. В результатах показано, что предложенный метод расчета коэффициентов компетентности участников группового принятия решений через локальную линейную интерполяцию является наиболее эффективным для выбора наилучшей альтернативы при мультивариантности результата по мажоритарному принципу относительного большинства.
Бесплатно
![Метод формирования цифровой тени процесса перемещения человека на основе объединения систем захвата движений Метод формирования цифровой тени процесса перемещения человека на основе объединения систем захвата движений](/file/thumb/14127425/metod-formirovanija-cifrovoj-teni-processa-peremeshhenija-cheloveka-na-osnove.png)
Статья
В статье рассматривается задача формирования цифровой тени процесса перемещения человека. Проведен анализ предметной области, который показал необходимость формализации процесса создания цифровых теней для имитации движений человека в виртуальном пространстве, тестировании программно-аппаратных комплексов, функционирующих на основе действий человека, а также в различных системах опорно-двигательной реабилитации. Выявлено, что среди существующих подходов к захвату движений человека нельзя выделить универсальный и стабильно работающий при различных условиях внешней среды. Разработан метод формирования цифровой тени на основе комбинирования и синхронизации данных из трех систем захвата движений (трекеры виртуальной реальности, костюм motion capture и камеры с использованием технологий компьютерного зрения). Объединение перечисленных систем позволяет получить комплексную оценку положения и состояния человека независимо от условий внешней среды (электромагнитные помехи, освещенность). Для реализации предложенного метода проведена формализация цифровой тени процесса перемещения человека, включающая описание механизмов сбора и обработки данных от различных систем захвата движений, а также этапы объединения, фильтрации и синхронизации данных. Научная новизна метода заключается в формализации процесса сбора данных о перемещении человека, объединении и синхронизации аппаратного обеспечения используемых систем захвата движений для создания цифровых теней процесса перемещения человека. Полученные теоретические результаты будут использоваться в качестве основы для программной абстракции цифровой тени в информационных системах для решения задач тестирования, имитации человека и моделирования его реакции на внешние раздражители за счет обобщения собранных массивов данных о его перемещении.
Бесплатно
![Методы и модели извлечения знаний из медицинских документов Методы и модели извлечения знаний из медицинских документов](/file/thumb/14127410/metody-i-modeli-izvlechenija-znanij-iz-medicinskih-dokumentov.png)
Методы и модели извлечения знаний из медицинских документов
Статья
В работе выполнен анализ современного состояния проблемы извлечения знаний из клинических рекомендаций, представленных в виде слабоструктурированных корпусов текстовых документов на естественном языке с учетом их периодического обновления. Рассматриваемые методы интеллектуального анализа накопленных массивов медицинских данных позволяют автоматизировать ряд задач, направленных на повышение качества медицинской помощи за счет значимой поддержки принятия решений в процессе диагностики и лечения. Выполнен обзор известных публикаций, освещающий подходы к автоматизации построения нейросетевых языковых моделей, онтологий и графов знаний в задачах семантического моделирования проблемно-ориентированного корпуса текстов. Представлена структурно-функциональная организация системы извлечения знаний и автоматического построения онтологии и графа знаний проблемно-ориентированного корпуса для конкретной предметной области. Рассмотрены основные этапы извлечения знаний и динамического обновления графа знаний: извлечение именованных сущностей, семантическое аннотирование, извлечение терминов, ключевых слов, тематическое моделирование, идентификация тем и извлечение отношений. Формализованное представление текстов получено с помощью предобученной модели-трансформера BERT. Использовано автоматическое выделение триплетов «объект»-«действие»-«субъект» на основе частеречной разметки корпуса текстов для построения фрагментов графа знаний. Проведен эксперимент на корпусе медицинских текстов заданной тематики (162 документа обезличенных историй болезни пациентов педиатрического центра) без предварительной разметки с целью проверки предложенного решения по извлечению триплетов и конструирования на их основе графа знаний. Анализ экспериментальных результатов подтверждает необходимость более глубокой разметки корпуса текстовых документов для учета специфики медицинских текстовых документов. Показано, что модели общего назначения не позволяют приблизиться по качеству выделения именованных сущностей к специализированным моделям, однако, позволяют предварительно разметить корпус для дальнейшей верификации и уточнения разметки (оценка F1-меры для модели общего назначения – 20,4% по сравнению с вариантом использования словаря – 16,7%). Для неразмеченного корпуса текстов предложенное решение демонстрирует удовлетворительную работоспособность ввиду выделения атомарных фрагментов, включаемых в автоматически формируемую онтологию.
Бесплатно
![Методы классификации ЭЭГ-паттернов воображаемых движений Методы классификации ЭЭГ-паттернов воображаемых движений](/file/thumb/14127311/metody-klassifikacii-jejeg-patternov-voobrazhaemyh-dvizhenij.png)
Методы классификации ЭЭГ-паттернов воображаемых движений
Статья
Рассматриваются наиболее перспективные методы классификации электроэнцефалографических сигналов при разработке неинвазивных интерфейсов мозг–компьютер и теоретических подходов для успешной классификации электроэнцефалографических паттернов. Приводится обзор работ, использующих для классификации риманову геометрию, методы глубокого обучения и различные варианты предобработки и кластеризации электроэнцефалографических сигналов, например общего пространственного фильтра. Среди прочих подходов предобработка электроэнцефалографических сигналов с применением общего пространственного фильтра часто используется как в офлайн, так и в онлайн режимах. Согласно исследованиям последних лет сочетание общего пространственного фильтра, линейного дискриминантного анализа, метода опорных векторов и нейронной сети с обратным распространением ошибки позволило достигнуть 91% точности при двухклассовой классификации с обратной связью в виде управления экзоскелетом. Исследований по использованию римановой геометрии в условиях онлайн очень мало, и на данный момент наилучшая точность при двухклассовой классификации составляет 69,3%. При этом в офлайн тестировании средний процент классификации в рассмотренных статьях для подходов с применением общего пространственного фильтра – 77,5±5,8%, сетей глубокого обучения – 81,7±4,7%, римановой геометрии – 90,2±6,6%. За счет нелинейных преобразований методы, основанные на римановой геометрии, а также на применении глубоких нейронных сетей сложной архитектуры, обеспечивают большую точность и способность к извлечению полезной информации из сигнала по сравнению с линейным преобразованием общего пространственного фильтра. Однако в условиях реального времени важна не только точность, но и минимальная временная задержка. Здесь преимущество может быть за подходами с использованием преобразования общего пространственного фильтра и римановой геометрии с временной задержкой менее 500 мс.
Бесплатно
![Модель информационного взаимодействия элементов многоуровневой системы цифровых двойников Модель информационного взаимодействия элементов многоуровневой системы цифровых двойников](/file/thumb/14127327/model-informacionnogo-vzaimodejstvija-jelementov-mnogourovnevoj-sistemy-cifrovyh.png)
Модель информационного взаимодействия элементов многоуровневой системы цифровых двойников
Статья
Одной из значимых проблем исследования процессов и явлений в окружающей среде является характерная для технических средств их регистрации пространственно-временная анизотропия. Причиной тому является зачастую крайне неравномерное распределение средств мониторинга по земной поверхности, а также многочисленные выбросы и пропуски в данных, обусловленные как несовершенством используемого оборудования, так и человеческим фактором. Одним из вариантов решения проблемы является применение многоуровневой системы цифровых двойников, базирующихся на соответствующих отраслевых моделях и пополняемой базе архивных данных, что в совокупности с физическими прототипами технических систем обеспечивает высокую плотность покрытия земной поверхности и возможность восстановления соответствующих данных. Вместе с тем нерешенным по-прежнему остается вопрос организации информационного взаимодействия между уровнями системы цифровых двойников, что в значительной степени усугубляется постоянно растущим объемом данных и их неоднородным характером. В работе предлагается организация информационного взаимодействия в системе цифровых двойников на основе формализованного механизма пакетирования пространственно-временной информации, при котором идентификация источников данных выполняется посредством иерархической системы бинарной токенизации. На примере технических систем мониторинга параметров геомагнитного поля и его вариаций рассматриваются особенности практической реализации такого подхода, отличительной особенностью которого является комбинирование традиционной клиент-серверной и инновационной бессерверной архитектур, для реализации высоконагруженного реактивного веб-приложения для работы с анализируемыми данными. Результаты проведенных вычислительных экспериментов подтвердили эффективность предложенных решений, выраженной как в повышении реактивности клиент-ориентированных приложений, так и в увеличении вычислительной скорости формирования и заполнения информационных хранилищ, агрегирующих информацию из распределенных гетерогенных источников.
Бесплатно
![Модель машинного обучения для определения оптимальной стратегии в онлайн-аукционе Модель машинного обучения для определения оптимальной стратегии в онлайн-аукционе](/file/thumb/14127424/model-mashinnogo-obuchenija-dlja-opredelenija-optimalnoj-strategii-v.png)
Модель машинного обучения для определения оптимальной стратегии в онлайн-аукционе
Статья
В работе рассмотрено применение модели машинного обучения для определения оптимальной стратегии пользователя для победы в аукционе на покупку товара/услуги с использованием задачи наилучшего выбора. Применение модели наилучшего выбора позволяет участникам аукциона определить стратегию, которая минимизирует ожидаемую стоимость товара/услуги на основе функции распределения его цен. На практике наиболее часто цены на товар, услугу или ресурс имеют распределение, близкое к нормальному или к смеси нормальных распределений. Возникают задачи определения числа компонент смеси нормальных распределений и определения ее параметров. Одним из распространенных методов для определения числа компонент смеси распределений является BIC критерий. Оценить неизвестные параметры смеси нормальных распределений при фиксированном числе компонент можно с помощью EM-алгоритма, однако временные затраты на оценку параметров данным методом возрастают как при увеличении объёма выборки, так и при увеличении числа рассматриваемых компонент смеси. Разработана классификационная модель машинного обучения на основе сверточной нейронной сети для автоматизации и ускорения процесса определения числа компонент смеси нормальных распределений и оценки ее параметров. Приведены результаты тренировки и тестирования модели машинного обучения. Проведено сравнение применения разработанной модели с другими алгоритмами, не использующими нейронные сети. Результаты показывают, что предложенная модель позволяет эффективно определить наиболее подходящее число компонент для смеси нормальных распределений и уменьшает скорость вычисления параметров распределения при применении EM-алгоритма. Модель машинного обучения может быть применена в различных областях, например, в финансовом анализе или для определения оптимальной стратегии в аукционе на аренду вычислительного ресурса.
Бесплатно
![Мониторинг надежности пользовательских вычислительных устройств в режиме реального времени: систематическое отображение Мониторинг надежности пользовательских вычислительных устройств в режиме реального времени: систематическое отображение](/file/thumb/14128222/monitoring-nadezhnosti-polzovatelskih-vychislitelnyh-ustrojstv-v-rezhime-realnogo.png)
Статья
Данный исследовательский обзор сосредоточен на мониторинге надежности вычислительных систем в режиме реального времени на стороне пользователя. В условиях гетерогенной и распределенной вычислительной среды, где отсутствует централизованный контроль, исследуется использование моделей искусственного интеллекта для поддержки процессов принятия решений в мониторинге надежности системы. Методология исследования основана на систематическом отображении предыдущих исследований, опубликованных в научных базах данных IEEE и Scopus. Анализ проведен на основе 50 научных статей, опубликованных с 2013 по 2022 годы, показал растущий научный интерес к данной области. Основное применение исследуемого метода связано с сетевыми технологиями и здравоохранением. Данный метод нацелен на интеграцию сети медицинских сенсоров и управляющих данных с пользовательскими вычислительными устройствами. Однако этот метод также применяется в промышленном и экологическом мониторинге. Выводы исследования показывают, что мониторинг надежности пользовательских вычислительных устройств в режиме реального времени находится на начальной стадии развития. Он не имеет стандартов, но за последние два года приобрел значительное значение и интерес. Большинство исследуемых статей сосредоточены на методах сбора данных с использованием уведомлений для поддержки централизованных стратегий принятия решений. Однако, существует множество возможностей для дальнейшего развития данного метода, таких как совместимость данных, федеративные и совместные модели принятия решений, формализация экспериментального дизайна, суверенитет данных, систематизация базы данных для использования предыдущих знаний и опыта, стратегии калибровки и повторной корректировки для источников данных.
Бесплатно
![Нечетко-логические методы в задаче детектирования границ объектов Нечетко-логические методы в задаче детектирования границ объектов](/file/thumb/14127378/nechetko-logicheskie-metody-v-zadache-detektirovanija-granic-obektov.png)
Нечетко-логические методы в задаче детектирования границ объектов
Статья
Рассматривается задача уменьшения вычислительной сложности методов выделения контуров на изображениях. Решение поставленной задачи достигается модификацией детектора Канни двумя нечетко-логическими методами, позволяющими сократить число проходов по исходному изображению: в-первом случае, путем исключения двух проходов, связанных с определением наличия соседства претендующего на границу пикселя со смежными в рамке размером 3´3, а во-втором случае, исключением операции определения угла направления градиента путем формирования данной величины комбинацией нечетких правил. Целью работы является уменьшение времени детектирования границ объектов на фото- видео-изображениях, за счет уменьшения вычислительной сложности применяемых методов. Интеллектуализация процесса детектирования границ осуществляется частичным повтором вычислительных операций, используемых в детекторе Канни, с дальнейшей заменой наиболее сложных вычислительных процедур. В предлагаемых методах после определения величины градиента и угла его направления осуществляется фаззификация восьми входных переменных, в качестве которых используется разность градиентов между центральной и смежными ячейками в рамке размером 3´3. Затем строится база нечетких правил. В первом методе в зависимости от угла направления градиента используются четыре нечетких правила и исключается один проход. Во втором методе шестнадцать нечетких правил сами задают угол направления градиента, при этом исключается два прохода вдоль изображения. Разность градиентов между центральной ячейкой и смежными ячейками позволяет учитывать форму распределения градиента. Затем на основе метода центра тяжести осуществляется дефаззификация результирующей переменной. Дальнейшее использование нечетких a-срезов позволяет осуществить бинаризацию результирующего изображения с выделением на нем границ объектов. Для оценки вычислительной скорости работы предложенных нечетких методов детектирования границ в среде Microsoft Visual Studio было разработано программное обеспечение. Представленные экспериментальные результаты показали, что уровень шума зависит от величины a-среза и параметров меток трапециевидных функций принадлежности. Ограничением двух методов является использование кусочно-линейных функций принадлежности. Экспериментальные исследования работоспособности предложенных методов детектирования контуров показали, что время первого нечеткого метода на 18% быстрее по сравнению с детектором Канни и на 2 % по отношению ко второму нечеткому методу. Однако при визуальной оценке установлено, что второй нечеткий метод лучше определяет границы объектов.
Бесплатно
![Открытие чёрного ящика: Извлечение семантических факторов Осгуда из языковой модели word2vec Открытие чёрного ящика: Извлечение семантических факторов Осгуда из языковой модели word2vec](/file/thumb/14127400/otkrytie-chjornogo-jashhikaizvlechenie-semanticheskih-faktorov-osguda-iz.png)
Открытие чёрного ящика: Извлечение семантических факторов Осгуда из языковой модели word2vec
Статья
Современные модели искусственного интеллекта развиваются в парадигме чёрного ящика, когда значима только информация на входе и выходе системы, тогда как внутренние представления интерпретации не имеют. Такие модели не обладают качествами объяснимости и прозрачности, необходимыми во многих задачах. Статья направлена на решение данной проблемы путём нахождения семантических факторов Ч. Осгуда в базовой модели машинного обученния word2vec, представляющей слова естественного языка в виде 300-мерных неинтерпретируемых векторов. Искомые факторы определяются на основе восьми семантических прототипов, составленных из отдельных слов. Ось оценки в пространстве word2vec находится как разность между положительным и отрицательным прототипами. Оси силы и активности находятся на основе шести процессно-семантических прототипов (восприятие, анализ, планирование, действие, прогресс, оценка), представляющих фазы обобщённого кругового процесса в данной плоскости. Направления всех трёх осей в пространстве word2vec найдены в простой аналитической форме, не требующей дополнительного обучения. Как и ожидается для независимых семантических факторов, полученные направления близки к попарной ортогональности. Значения семантических факторов для любого объекта word2vec находятся с помощью простой проективной операции на найденные направления. В соответствии с требованиями к объяснимому ИИ, представленный результат открывает возможность для интерпретации содержимого алгоритмов типа "чёрный ящик'' в естественных эмоционально-смысловых категориях. В обратную сторону, разработанный подход позволяет использовать модели машинного обучения в качестве источника данных для когнитивно-поведенческого моделирования.
Бесплатно
![Оценивание информативности признаков в наборах данных для проведения продлённой аутентификации Оценивание информативности признаков в наборах данных для проведения продлённой аутентификации](/file/thumb/14128708/ocenivanie-informativnosti-priznakov-v-naborah-dannyh-dlja-provedenija.png)
Оценивание информативности признаков в наборах данных для проведения продлённой аутентификации
Статья
Продлённая аутентификация позволяет избавиться от недостатков, присущих статической аутентификации, например, идентификаторы могут быть потеряны или забыты, пользователь совершает только первоначальный вход в систему, что может быть опасно не только для областей, требующих обеспечения высокого уровня безопасности, но и для обычного офиса. Динамическая проверка пользователя во время всего сеанса работы может повысить безопасность системы, поскольку во время работы пользователь может подвергнуться воздействию со стороны злоумышленника (например, быть атакованным) или намеренно передать ему права. В таком случае оперировать машиной будет не пользователь, который выполнил первоначальный вход. Классификация пользователей во время работы системы позволит ограничить доступ к важным данным, которые могут быть получены злоумышленником. Во время исследования были изучены методы и наборы данных, использующихся для продлённой аутентификации. Затем был сделан выбор наборов данных, которые использовались в дальнейшем исследовании: данные о движении смартфона и смарт-часов (WISDM) и динамике активности мыши (Chao Shen’s, DFL, Balabit). Помочь улучшить результаты работы моделей при классификации может предварительный отбор признаков, например, через оценивание их информативности. Уменьшение размерности признаков позволяет снизить требования к устройствам, которые будут использоваться при их обработке, повысить объём перебора значений параметров классификаторов при одинаковых временных затратах, тем самым потенциально повысить долю правильных ответов при классификации за счёт более полного перебора параметров значений. Для оценивания информативности использовались метод Шеннона, а также алгоритмы, встроенные в программы для анализа данных и машинного обучения (WEKA: Machine Learning Software и RapidMiner). В ходе исследования были выполнены расчёты информативности каждого признака в выбранных для исследования наборах данных, затем с помощью RapidMiner были проведены эксперименты по классификации пользователей с последовательным уменьшением количества используемых при классификации признаков с шагом в 20%. В результате была сформирована таблица с рекомендуемыми наборами признаков для каждого набора данных, а также построены графики зависимостей точности и времени работы различных моделей от количества используемых при классификации признаков.
Бесплатно