Karyotype abnormalities in chronic myeloproliferative neoplasms

Автор: Assesorova Yu.yu.

Журнал: Вестник гематологии @bulletin-of-hematology

Рубрика: Обзор литературы

Статья в выпуске: 3 т.18, 2022 года.

Бесплатный доступ

The data accumulated by the present time about the role of genetic events in the pathogenesis of chronic myeloproliferative neoplasms (CMPN) have made it possible to develop new approaches to the diagnosis and treatment of these diseases. Despite the widespread introduction of molecular methods into the medical practice, classical cytogenetic research continues to hold one of the main positions in the diagnosis and monitoring of CMPN. Cytogenetic examination allows to evaluate the entire karyotype without reference to molecular loci and to identify marker, recurrent and unique chromosomal abnormalities having diagnostic and prognostic value. Numerical and structural abnormalities of chromosomes are detected in the karyotype of leukemic clones in a significant number of patients with CMPN, herewith the proportion of patients with an altered karyotype, as well as the spectrum of cytogenetic disorders increases with the progression of the disease. The review article examines literature data concerning the main points of the pathogenesis of CMPN and the role of a wide profile of clonal cytogenetic anomalies that can be detected in the karyotype of the patient leukemia cells.

Еще

Chronic myeloproliferative neoplasms, chromosomal abnormalities, conventional cytogenetic study

Короткий адрес: https://sciup.org/170195751

IDR: 170195751

Список литературы Karyotype abnormalities in chronic myeloproliferative neoplasms

  • Melikyan A.L., Turkina A.G., Abdulkadyrov K.M., et al. Clinical recommendations for the diagnosis and therapy of Ph-negative myeloproliferative diseases (true polycythemia, essential thrombocythemia, primary myelofibrosis). Hematology and transfusiology. 2014. V.59(4). -P.31-56.
  • Polyakov A.S., Tyrenko V.V., Noskov Ya.A., etc. Clinical and laboratory features of various types of interferon therapy of classical ph-negative myeloproliferative neoplasia. Genes and cells. 2016. V.11. №3. -P.153-161.
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. doi: 10.1182/blood-2016-03-643544.
  • WHO Classification of tumours of lymphoid and hematopoietic tissues. Lyon: IARC. - 2017. -585.
  • Asou N. [Myeloid neoplasms in the World Health Organization 2016 classification]. Rinsho Ketsueki. 2017;58(10):2178-2187. Japanese. doi: 10.11406/rinketsu.58.2178.
  • Barbui T, Thiele J, Gisslinger H, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018 Feb 9;8(2):15. doi: 10.1038/s41408-018-0054-y.
  • Tefferi A, Dewald GW, Litzow ML, et al. Chronic myeloid leukemia: current application of cytogenetics and molecular testing for diagnosis and treatment. Mayo Clin Proc. 2005 Mar;80(3):390-402. doi: 10.4065/80.3.390.
  • Turkina A.G., Zaritsky A.Yu., Shuvaev VA., et al. Clinical recommendations for the diagnosis and treatment of chronic myeloid leukemia. Clinical oncohematology. Basic research and clinical practice. 2017. V.10(3). -P.294-316.
  • Cabanas H, Harnois T, Magaud C, et al. Deregulation of calcium homeostasis in Bcr-Abl-dependent chronic myeloid leukemia. Oncotarget. 2018 May 29;9(41):26309-26327. doi: 10.18632/oncotarget.25241. PMID: 29899861; PMCID: PMC5995172.
  • Boni C, Sorio C. Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia. Cancers (Basel). 2021 May 12;13(10):2311. doi: 10.3390/cancers13102311. PMID: 34065882; PMCID: PMC8151247.
  • Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 Apr;34(4):966-984. doi: 10.1038/s41375-020-0776-2.
  • Adnan-Awad S, Kim D, Hohtari H, et al. Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia. 2021 Jul;35(7):1964-1975. doi: 10.1038/s41375-020-01082-4.
  • Ertz-Archambault N, Kelemen K. Relapse and cytogenetic evolution in myeloid neoplasms. Panminerva Med. 2017 Dec;59(4):308-319. doi: 10.23736/S0031-0808.17.03380-8.
  • Xue M, Cheng J, Zhao J, et al. Outcomes of 219 chronic myeloid leukaemia patients with additional chromosomal abnormalities and/or tyrosine kinase domain mutations. Int J Lab Hematol. 2019 Feb;41(1):94-101. doi: 10.1111/ ijlh.12928.
  • Luatti S, Castagnetti F, Marzocchi G, et al. Additional chromosomal abnormalities in Philadelphia-positive clone: adverse prognostic influence on frontline imatinib therapy: a GIMEMA Working Party on CML analysis. Blood. 2012 Jul 26;120(4):761-7. doi: 10.1182/blood-2011-10-384651.
  • Karrman K, Sallerfors B, Lenhoff S, et al. Cytogenetic evolution patterns in CML post-SCT. Bone Marrow Transplant. 2007 Feb;39(3):165-71. doi: 10.1038/sj.bmt.1705560.
  • Wang W, Cortes JE, Tang G, et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016 Jun 2;127(22):2742-50. doi: 10.1182/blood-2016-01-690230.
  • Patel HS, Brahmbhatt MM, Trivedi PJ, et al. CML in Chronic Phase with Novel Secondary Cytogenetic Abnormalities: A Case Report. J Assoc Genet Technol. 2016;42(2):57-9. PMID: 27584557.
  • Krishna Chandran R, Geetha N, Sakthivel km, et al. Impact of Additional Chromosomal Aberrations on the Disease Progression of Chronic Myelogenous Leukemia. Front Oncol. 2019 Mar 5;9:88. doi: 10.3389/fonc.2019.00088.
  • Asnafi AA, Deris Zayeri Z, Shahrabi S, et al. Chronic myeloid leukemia with complex karyotypes: Prognosis and therapeutic approaches. J Cell Physiol. 2019 May;234(5):5798-5806. doi: 10.1002/jcp.27505.
  • De Braekeleer E, Douet-Guilbert N, Le Bris MJ, et al. Double Inv(3)(q21q26), a rare but recurrent chromosomal abnormality in myeloid hemopathies. Anticancer Res. 2013 Feb;33(2):639-42. PMID: 23393360.
  • Crisan AM, Coriu D, Arion C, et al. The impact of additional cytogenetic abnormalities at diagnosis and during therapy with tyrosine kinase inhibitors in Chronic Myeloid Leukaemia. J Med Life. 2015 Oct-Dec;8(4):502-8. PMID: 26664479.
  • Meggyesi N, Kozma A, Halm G, et al. Additional chromosome abnormalities, BCR-ABL tyrosine kinase domain mutations and clinical outcome in Hungarian tyrosine kinase inhibitor-resistant chronic myelogenous leukemia patients. Acta Haematol. 2012;127(1):34-42. doi: 10.1159/000331472.
  • Chen Z, Shao C, Wang W, et al. Cytogenetic landscape and impact in blast phase of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia. 2017 Mar;31(3):585-592. doi: 10.1038/leu.2016.231.
  • Molica M, Massaro F, Breccia M. Diagnostic and prognostic cytogenetics of chronic myeloid leukaemia: an update. Expert Rev Mol Diagn. 2017 Nov;17(11):1001-1008. doi: 10.1080/14737159.2017.1383156.
  • Ochi Y, Yoshida K, Huang YJ, et al. Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nat Commun. 2021 May 14;12(1):2833. doi: 10.1038/s41467-021-23097-w. PMID: 33990592; PMCID: PMC8121838.
  • Anwar N, Nadeem M, Khurram S, et al. Additional cytogenetic abnormalities in chronic myeloid leukaemia; an experience from Pakistan. J Pak Med Assoc. 2021 Feb;71(2(B)):633-635. doi: 10.47391/JPMA.794. PMID: 33941949.
  • Luatti S, Baldazzi C, Marzocchi G, et al. Cryptic BCR-ABL fusion gene as variant rearrangement in chronic myeloid leukemia: molecular cytogenetic characterization and influence on TKIs therapy. Oncotarget. 2017 May 2;8(18):29906-29913. doi: 10.18632/oncotarget.15369.
  • Abdulkadyrov K.M., Shuvaev V.A., Martynkevich I.S. Myeloproliferative neoplasms. M.: Litterra. 2016. -289 p.
  • Alvarez-Larrán A, Senín A, Fernández-Rodríguez C, et al. Impact of genotype on leukaemic transformation in polycythaemia vera and essential thrombocythaemia. Br J Haematol. 2017 Sep;178(5):764-771. doi: 10.1111/bjh.14762.
  • Melikyan A.L., Subortseva I.N. Biology of myeloproliferative neoplasms. Clinical oncohematology. Basic research and clinical practice. 2016. V.9(3). -P.314-325.
  • Stuckey R, Gómez-Casares MT. Recent Advances in the Use of Molecular Analyses to Inform the Diagnosis and Prognosis of Patients with Polycythaemia Vera. Int J Mol Sci. 2021 May 10;22(9):5042. doi: 10.3390/ijms22095042. PMID: 34068690; PMCID: PMC8126083.
  • Rayamajhi A, Pokhrel B, Khanal S, Shrestha A. Undiagnosed polycythemia, an uncommon cause of Wallenberg syndrome: A case report. Clin Case Rep. 2022 Apr 20;10(4):e05752. doi: 10.1002/ccr3.5752. PMID: 35474990; PMCID: PMC9020440.
  • Regimbeau M, Mary R, Hermetet F, Girodon F. Genetic Background of Polycythemia Vera. Genes (Basel). 2022 Apr 2;13(4):637. doi: 10.3390/genes13040637. PMID: 35456443; PMCID: PMC9027017.
  • Poitras JL, Dal Cin P, Aster JC, et al. Novel SSBP2-JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre-B acute lymphocytic leukemia. Genes Chromosomes Cancer. 2008 0ct;47(10):884-9. doi: 10.1002/gcc.20585.
  • Ho K, Valdez F, Garcia R, Tirado CA. JAK2 Translocations in hematological malignancies: Review of the literature. J Assoc Genet Technol. 2010;36(3):107-9. PMID: 20978341.
  • Patnaik MM, Knudson RA, Gangat N, et al. Chromosome 9p24 abnormalities: prevalence, description of novel JAK2 translocations, JAK2V617F mutation analysis and clinicopathologic correlates. Eur J Haematol. 2010 Jun;84(6):518-24. doi: 10.1111/j.1600-0609.2010.01428.x.
  • Dargent JL, Mathieux V, Vidrequin S, et al. Pathology of the bone marrow and spleen in a case of myelodysplastic/ myeloproliferative neoplasm associated with t(8;9)(p22;p24) involving PCM1 and JAK2 genes. Eur J Haematol. 2011 Jan;86(1):87-90. doi: 10.1111/j.1600-0609.2010.01525.x.
  • Saba N, Safah H. A myeloproliferative neoplasm with translocation t(8;9)(p22;p24) involving JAK2 gene. Blood. 2013 Aug 8;122(6):861. doi: 10.1182/blood-2013-03-487348.
  • Song I, Lee DH, Lee JH, et al. A t(8;9)(p22;p24)/PCM1-JAK2 translocation in a patient with myeloproliferative neoplasm and myeloid sarcoma: first report in Korea. Ann Lab Med. 2016 Jan;36(1):79-81. doi: 10.3343/alm.2016.36.1.79.
  • Tang G, Sydney Sir Philip JK, Weinberg O, et al. Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study. Mod Pathol. 2019 Apr;32(4):490-498. doi: 10.1038/s41379-018-0165-9.
  • Levavi H, Tripodi J, Marcellino B, et al. A Novel t(1;9)(p36;p24.1) JAK2 Translocation and Review of the Literature. Acta Haematol. 2019;142(2):105-112. doi: 10.1159/000498945.
  • Tang G, Hidalgo Lopez JE, Wang SA, et al. Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera. Haematologica. 2017 Sep;102(9):1511-1518. doi: 10.3324/haematol.2017.165795. Epub 2017 May 4. PMID: 28473622; PMCID: PMC5685217.
  • Lanzarone G, Olivi M. The Prognostic Role of Cytogenetics Analysis in Philadelphia Negative Myeloproliferative Neoplasms. Medicina (Kaunas). 2021 Aug 9;57(8):813. doi: 10.3390/medicina57080813. PMID: 34441019; PMCID: PMC8398709.
  • Liu K, Tirado CA. A t(3;8)(q26.2;q24) involving the EVI1 (MECOM) Gene. J Assoc Genet Technol. 2018;44(3):92-99. PMID: 30208012.
  • Larsen TS, Hasselbalch HC, Pallisgaard N, Kerndrup GB. A der(18)t(9;18)(p13;p11) and a der(9;18)(p10;q10) in polycythemia vera associated with a hyperproliferative phenotype in transformation to postpolycythemic myelofibrosis. Cancer Genet Cytogenet. 2007 Jan 15;172(2):107-12. doi: 10.1016/j.cancergencyto.2006.09.015.
  • Melikyan A.L., Turkina A.G., Kovrigina A.M., et al. Clinical recommendations for the diagnosis and therapy of Ph-negative myeloproliferative diseases (true polycythemia, essential thrombocythemia, primary myelofibrosis) (2016 edition). Hematology and transfusiology. 2017. V.62(1-S1). -P.25-60.
  • Meier B, Burton JH. Myeloproliferative disorders. Emerg Med Clin North Am. 2014 Aug;32(3):597-612. doi: 10.1016/j.emc.2014.04.014.
  • Loscocco GG, Guglielmelli P, Vannucchi AM. Impact of Mutational Profile on the Management of Myeloproliferative Neoplasms: A Short Review of the Emerging Data. Onco Targets Ther. 2020 Dec 1;13:12367-12382. doi: 10.2147/0TT. S287944. PMID: 33293830; PMCID: PMC7718985.
  • Wang X, LeBlanc A, Gruenstein S, et al. Clonal analyses define the relationships between chromosomal abnormalities and JAK2V617F in patients with Ph-negative myeloproliferative neoplasms. Exp Hematol. 2009 0ct;37(10):1194-200. doi: 10.1016/j.exphem.2009.07.003.
  • Hussein K, Huang J, Lasho T, et al. Karyotype complements the International Prognostic Scoring System for primary myelofibrosis. Eur J Haematol. 2009 Apr;82(4):255-9. doi: 10.1111/j.1600-0609.2009.01216.x.
  • Meshcheryakova L.M., Korotkova O.V., Kovaleva L.G., et al. Primary myelofibrosis. Oncohematology. 2011. V.4. -P.50-58.
  • Tefferi A. Polycythemia vera and essential thrombocythemia: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol. 2013 Jun;88(6):507-16. doi: 10.1002/ajh.23417.
  • Tefferi A. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016 Dec;91(12):1262-1271. doi: 10.1002/ajh.24592.
  • Abdulkadyrov K.M., Shuvaev VA., Martynkevich I.S. Primary myelofibrosis: own experience and new in diagnosis and treatment. Oncohematology. 2015. V.10(2). -P.26-36.
  • Alshemmari SH, Rajan R, Emadi A. Molecular Pathogenesis and Clinical Significance of Driver Mutations in Primary Myelofibrosis: A Review. Med Princ Pract. 2016;25(6):501-509. doi: 10.1159/000450956.
  • Hussein K, Pardanani AD, Van Dyke DL, et al. International Prognostic Scoring System-independent cytogenetic risk categorization in primary myelofibrosis. Blood. 2010 Jan 21;115(3):496-9. doi: 10.1182/blood-2009-08-240135.
  • Tefferi A, Siragusa S, Hussein K, et al. Transfusion-dependency at presentation and its acquisition in the first year of diagnosis are both equally detrimental for survival in primary myelofibrosis--prognostic relevance is independent of IPSS or karyotype. Am J Hematol. 2010 Jan;85(1):14-7. doi: 10.1002/ajh.21574.
  • Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011 Feb 1;29(4):392-7. doi: 10.1200/JCO.2010.32.2446.
  • Rupoli S, Goteri G, Picardi P, et al. Thrombosis in essential thrombocythemia and early/prefibrotic primary myelofibrosis: the role of the WHO histological diagnosis // Diagn Pathol. -2015 Apr 16. -V.10. -P.29. DOI: 10.1186/ s13000-015-0269-1
  • Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018 Jan 10;8(1):2. doi: 10.1038/s41408-017-0041-8.
  • Yang E, Wang M, Wang Z, et al. Comparison of the effects between MPL and JAK2V617F on thrombosis and peripheral blood cell counts in patients with essential thrombocythemia: a meta-analysis. Ann Hematol. 2021 Nov;100(11):2699-2706. doi: 10.1007/s00277-021-04617-6.
  • Pshonkin A.V., Ershov N.M., Smetanina N.S. Essential thrombocythemia. Pediatrics. 2015. V94, №6. -P.120-127.
  • Szuber N, Hanson CA, Lasho TL, et al. MPL-mutated essential thrombocythemia: a morphologic reappraisal. Blood Cancer J. 2018 Nov 20;8(12):121. doi: 10.1038/s41408-018-0159-3.
  • Elsayed AG, Ranavaya A, Jamil MO. MPL Y252H anMd PL F126fs mutations in essential thrombocythemia: Case series and review of literature. Case series and review of literature. Hematol Rep. 2019 Mar 12;11(1):7868. doi: 10.4081/ hr.2019.7868.
  • Sun C, Zhou X, Zou ZJ, et al. Clinical Manifestation of Calreticulin Gene Mutations in Essential Thrombocythemia without Janus Kinase 2 and MPL Mutations: A Chinese Cohort Clinical Study. Chin Med J (Engl). 2016 Aug 5;129(15):1778-83. doi: 10.4103/0366-6999.186641.
  • Diep R, Metjian A. A rare CALR variant mutation and a review of CALR in essential thrombocythemia. J Thromb Thrombolysis. 2018 Apr;45(3):457-462. doi: 10.1007/s11239-018-1619-0. PMID: 29411299.
  • Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013 Dec 19;369(25):2379-90. doi: 10.1056/NEJMoa1311347.
  • Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013 Dec 19;369(25):2391-2405. doi: 10.1056/NEJMoa1312542.
  • Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014 Apr 3;123(14):2220-8. doi: 10.1182/blood-2013-11-537167.
  • Gangat N, Tefferi A, Thanarajasingam G, et al. Cytogenetic abnormalities in essential thrombocythemia: prevalence and prognostic significance. Eur J Haematol. 2009 Jul;83(1):17-21. doi: 10.1111/j.1600-0609.2009.01246.x.
  • Panani AD. Cytogenetic findings in untreated patients with essential thrombocythemia. In Vivo. 2006 May-Jun;20(3):381-4. PMID: 16724675.
  • Bacher U, Schnittger S, Grüneisen A, et al. Inverted duplication dup(1)(q32q21) as sole aberration in lymphoid and myeloid malignancies. Cancer Genet Cytogenet. 2009 Jan 15;188(2):108-11. doi: 10.1016/j.cancergencyto.2008.09.004.
  • Kim JE, Woo KS, Kim KE, et al. Duplications of the long arm of both chromosome 1, dup(1)(q21q32), leading to tetrasomy 1q in myelodysplastic syndrome. Leuk Res. 2010 Aug;34(8):e210-2. doi: 10.1016/j.leukres.20l0.02.028.
  • Beach DF, Barnoski BL, Aviv H, et al. Duplication of chromosome 1 [dup(1)(q21q32)] as the sole cytogenetic abnormality in a patient previously treated for AML. Cancer Genet. 2012 Dec;205(12):665-8. doi: 10.1016/j. cancergen.2012.09.004.
  • Reis MD, Sher GD, Lakhani A, et al. Deletion of the long arm of chromosome 5 in essential thrombocythemia. Cancer Genet Cytogenet. 1992 Jul 1;61(1):93-5. doi: 10.1016/0165-4608(92)90376-j.
  • Nakamura H, Hayashibara T, Kawachi T, et al. Chromosome 11 rearrangement at band 11q21 in a patient with essential thrombocythemia. Cancer Genet Cytogenet. 1992 Jan;58(1):105-7. doi: 10.1016/0165-4608(92)90145-x.
  • Yamada K, Nakamaki T, Yokoyama A, et al. [Sideroblastic anemia preceded by essential thrombocythemia with 20q- chromosome abnormality]. Rinsho Ketsueki. 1993 Sep;34(9):1027-32. Japanese. PMID: 8230746.
  • Vassiliou GS, Campbell PJ, Li J, et al. An acquired translocation in JAK2 Val617Phe-negative essential thrombocythemia associated with autosomal spread of X-inactivation. Haematologica. 2006 Aug;91(8):1100-4. PMID: 16885051.
  • Mitev L, Georgiev G, Petrov A, Manolova Y. Unusual chromosome aberration, t(13;14)(q32;q32.3), in a case of essential thrombocythemia with extreme thrombocytosis. Cancer Genet Cytogenet. 1996 Oct 1;91(1):68-70. doi: 10.1016/ s0165-4608(96)00153-7.
  • Hsiao HH, Ito Y, Sashida G, et al. De novo appearance of der(1;7)(q10;p10) is associated with leukemic transformation and unfavorable prognosis in essential thrombocythemia. Leuk Res. 2005 Nov;29(11):1247-52. doi: 10.1016/j.leukres.2005.03.011.
Еще
Статья обзорная