New approximate method for solving the Stokes problem in a domain with corner singularity

Бесплатный доступ

In this paper we introduce the notion of an Rv-generalized solution to the Stokes problem with singularity in a two-dimensional non-convex polygonal domain with one reentrant corner on its boundary in special weight sets. We construct a new approximate solution of the problem produced by weighted finite element method. An iterative process for solving the resulting system of linear algebraic equations with a block preconditioning of its matrix is proposed on the basis of the incomplete Uzawa algorithm and the generalized minimal residual method. Results of numerical experiments have shown that the convergence rate of the approximate Rv-generalized solution to an exact one is independent of the size of the reentrant corner on the boundary of the domain and equals to the first degree of the grid size h in the norm of the weight space W12,v(Ω) for the velocity field components in contrast to the approximate solution produced by classical finite element or finite difference schemes convergence to a generalized one no faster than at an O(hα) rate in the norm of the space W12(Ω) for the velocity field components, where α

Еще

Сorner singularity, weighted finite element method, preconditioning

Короткий адрес: https://sciup.org/147159476

IDR: 147159476   |   DOI: 10.14529/mmp180109

Список литературы New approximate method for solving the Stokes problem in a domain with corner singularity

  • Rukavishnikov, V.A. The Finite Element Method for a Boundary Value Problem with Strong Singularity/V.A. Rukavishnikov, H.I. Rukavishnikova//Journal of Computational and Applied Mathematics. -2010. -V. 234 -P. 2870-2882.
  • Rukavishnikov, V.A. New Numerical Method for Solving Time-Harmonic Maxwell Equations with Strong Singularity/V.A. Rukavishnikov, A.O. Mosolapov//Journal of Computational Physics. -2012. -V. 231. -P. 2438-2448.
  • Moffatt, H.K. Viscous and Resistive Eddies Near a Sharp Corner/H.K. Moffatt//Journal of Fluid Mechanics. -1964. -V. 18. -P. 1-18.
  • Dauge, M. Stationary Stokes and Navier-tokes System on Two -or Three-dimensional Domains with Corners. I. Linearized Equations/M. Dauge//SIAM Journal on Mathematical Analysis. -1989. -V. 20. -P. 74-97.
  • Schatz, A.H. Maximum Norm Estimates in the Finite Element Method on Plane Polygonal Domains. Part 1/A.H. Schatz, L.B. Wahlbin//Mathematics of Computation. -1978. -V. 32. -P. 73-109.
  • Blum, H. The Influence of Reentrant Corners in the Numerical Approximation of Viscous Flow Problems/H. Blum//Numerical Treatment of the Navier-Stokes Equations. -1989. -V. 30, № 5. -P. 37-46.
  • Guo, B. Analytic Regularity of Stokes Flow on Polygonal Domains in Countably Weighted Sobolev Spaces/B. Guo, C. Schwab//Journal of Computational and Applied Mathematics. -2006. -V. 190. -P. 487-519.
  • Burda, P. Precise FEM Solution of a Corner Singularity Using an Adjusted Mesh/P. Burda, J. Novotný, J. Sístek//International Journal for Numerical Methods in Fluids. -2005. -V. 47. -P. 1285-1292.
  • Brezzi, F. Mixed and Hybrid Finite Element Methods/F. Brezzi, M. Fortin. -N.Y.: Springer, 1991.
  • Linke, A. Collision in a Cross-Shaped Domain -A Steady 2D Navier-Stokes Example Demonstrating the Importance of Mass Conservation in CFD/A. Linke//Computational Methods in Applied Mechanics and Engineering. -2009. -V. 198. -P. 3278-3268.
  • Scott, L.R. Norm Estimates for a Maximal Right Inverse of the Divergence Operator in Spaces of Piecewise Polynomials/L.R. Scott, M. Vogelius//Mathematical Modeling and Numerical Analysis. -1985. -V. 19. -P. 111-143.
  • Рукавишников, В.А. Метод конечных элементов для первой краевой задачи с согласованным вырождением исходных данных/В.А. Рукавишников, Е.И. Рукавишникова//Доклады Академии наук. -1994. -Т. 338, № 6. -С. 731-733.
  • Рукавишников, В.А. Схема метода конечных элементов для краевой задачи с несогласованным вырождением исходных данных/В.А. Рукавишников, Е.В. Кузнецова//Сибирский журнал вычислительной математики. -2009. -Т. 12, № 3. -С. 313-324.
  • Rukavishnikov, V.A. On the Error Estimation of the Finite Element Method for the Boundary Value Problems with Singularity in the Lebesgue Weighted Space/V.A. Rukavishnikov, H.I. Rukavishnikova//Numerical Functional Analysis and Optimization. -2013. -V. 34. -P. 1328-1347.
  • Рукавишников, В.А. Весовой векторный метод конечных элементов для одной задачи электромагнетизма с сильной сингулярностью/В.А. Рукавишников, А.О. Мосолапов//Доклады Академии наук. -2013. -Т. 449, № 2. -С. 144-148.
  • Рукавишников, В.А. О дифференциальных свойствах Rv-обобщенного решения задачи Дирихле/В.А. Рукавишников//Доклады Академии наук СССР. -1989. -Т. 309, № 6. -С. 1318-1320.
  • Рукавишников, В.А. О единственности Rv-обобщенного решения для краевых задач с несогласованным вырождением исходных данных/В.А. Рукавишников//Доклады Академии наук. -2001. -Т. 376, № 4. -С. 451-453.
  • Рукавишников, В.А. О существовании и единственности Rv-обобщенного решения для краевой задачи с несогласованным вырождением исходных данных/В.А. Рукавишников//Доклады Академии наук. -2014. -Т. 458, № 3. -С. 261-263.
  • Рукавишников, В.А. Задача Дирихле с вырождением исходных данных на границе области/В.А. Рукавишников, Е.И. Рукавишникова//Дифференциальные уравнения. -2016. -Т. 52, № 5. -С. 701-704.
  • Ciarlet, P. The Finite Element Method for Elliptic Problems/P. Ciarlet. -Amsterdam: North-Holand, 1978.
  • Qin, J. On the Convergence of Some Low Order Mixed Finite Element for Incompressible Fluids. PhD thesis/J. Qin. -Pennsylvania: Pennsylvania State University, 1994.
  • Bramble, J.H. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems/J.H. Bramble, J.E. Pasciak, A.T. Vassilev//SIAM Journal on Numerical Analysis. -1997. -V. 34. -P. 1072-1092.
  • Saad, Y. Iterative Methods for Sparse Linear Systems/Y. Saad. -Minneapolis: University of Minnesota, 2003.
  • Olshanskii, M.A. Analysis of a Stokes Interface Problem/M.A. Olshanskii, A. Reusken//Numerische Mathematik. -2006. -V. 103. -P. 129-149.
  • Verfürth, R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques/R. Verfürth. -Chichester; Stuttgart: Wiley-Teubner, 1996.
Еще
Статья научная