Противоопухолевые вакцины. Литературный обзор

Автор: Боженко В.К., Ранджит Р., Ригер А.Н., Запиров Г.М., Кунда М.А., Пархоменко Р.А., Подольская М.В., Кудинова Е.А., Каприн А.Д.

Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr

Рубрика: Обзоры, лекции

Статья в выпуске: 4 т.22, 2022 года.

Бесплатный доступ

Разработку вакцин можно, без преувеличения, считать одним из самых значимых достижений современной науки в области медицины, что позволило в значительной мере снизить заболеваемость населения по всему миру. На сегодняшний день клинические исследования в этой сфере все еще продолжаются. Вакцины все чаще используются не только в борьбе с вирусными заболеваниями, но и с онкологическими заболеваниями. Некоторые вакцины против онкологических заболеваний уже зарегистрированы и активно применяются во многих странах. Однако было немало препятствий перед тем, как противораковые вакцины получили широкуюраспространенность в общей врачебной практике. Безусловно, многое еще находится на стадии разработки. Тем не менее, ряд противораковых вакцин в скором времени будет уже представлен на рынке благодаря многообещающим клиническим результатам. В данном литературном обзоре изложена краткая информация об истории создания противораковых вакцин, видах, механизмах их действия, а также о возможных нежелательных явлениях, возникающих на фоне их применения.

Еще

Токсины коли, гардасил, сипулеуцел-т, провенж, neovax, энджерикс в, рекомбивакс hb

Короткий адрес: https://sciup.org/149142268

IDR: 149142268

Список литературы Противоопухолевые вакцины. Литературный обзор

  • Lollini P.L., Cavallo F., Nanni P., Forni G. Vaccines for tumour prevention. Nat Rev Cancer. 2006. V. 6. No. 3. P. 204-216. DOI: 10.1038/NRC1815.
  • Finn O.J. Cancer vaccines: between the idea and the reality. Nat Rev Immunol. 2003. V. 3. No. 8. P. 630-641. DOI: 10.1038/NRI1150.
  • Hall D., Buettner G., Matthes R. A Commotion in the Blood. 1st ed. Henry Holt & Co. 1997.
  • Von Graefe A. Verhandlungen arztlicher gesellschaften. Berliner medicinische gesellschaft. Berl Klin Wschr. 1868. V. 5. P. 125-127.
  • O’Regan B., Hirshberg C. Spontaneous remission. An Annotated Bibliography. Sausolito: Institute of Noetic Sciences. 1993.
  • Busch W. Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr. 1868. V. 5. P. 137.
  • Coley W.B. II. Contribution to the Knowledge of Sarcoma. Ann Surg. 1891. V. 14. No. 3. P. 199-220. DOI: 10.1097/00000658-189112000-00015.
  • McCarthy E.F. The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas. Iowa Orthop J. 2006. V. 26. P. 154-158.
  • Coley W. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res. 1991. No. 262. P. 3-11.
  • Coley W.B. The treatment of inoperable sarcoma with the ’mixed toxins of erysipelas and bacillus prodigiosus.: immediate and final results in one hundred and forty cases. J Am Med Assoc. 1898. V. 31. No. 9. P. 456-465. DOI: 10.1001/JAMA.1898.92450090022001G.
  • Hoption Cann S.A., Van Netten J.P., Van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J. 2003. V. 79. No. 938. P. 672-680.
  • Johnston B., Novales E. Clinical effect of Coley’s toxin. II. A seven-year study. Cancer Chemother Rep. 1962. V. 21. P. 43-68.
  • Schiller J.T., Lowy D.R. Vaccines to Prevent Infections by Oncoviruses. Annu Rev Microbiol. 2010. V. 64. P. 23-41. DOI: 10.1146/ANNUREV.MICRO.112408.134019.
  • Bissett S.L., Godi A., Beddows S. The DE and FG loops of the HPV major capsid protein contribute to the epitopes of vaccine-induced cross-neutralising antibodies. Sci Rep. 2016. 2016. V. 6. Article ID 39730. DOI: 10.1038/srep39730.
  • Carter J.J., Yaegashi N., Jenison S.A., Galloway D.A. Expression of human papillomavirus proteins in yeast Saccharomyces cerevisiae. Virology. 1991. V. 182. No. 2. P. 513-521. DOI: 10.1016/0042-6822(91)90592-Y.
  • Garland S.M., Smith J.S. Human papillomavirus vaccines: current status and future prospects. Drugs. 2010. V. 70. No. 9. P. 1079-1098. DOI: 10.2165/10898580-000000000-00000.
  • Gallego L.S., Dominguez A., Parmar M. Human Papilloma Virus Vaccine. Treasure Island (FL): StatPearls Publishing. 2022.
  • Meites E., Szilagyi P.G., Chesson H.W., et al. Human Papillomavirus Vaccination for Adults: Updated Recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep. 2019. V. 68. No. 32. P. 698-702. DOI: 10.15585/MMWR.MM6832A3.
  • Stanley M. Prophylactic HPV vaccines. J Clin Pathol. 2007. V. 60. No. 9. P. 961-965. DOI: 10.1136/JCP.2006.040568.
  • Cutts F.T., Franceschi S., Goldie S., et al. Human papillomavirus and HPV vaccines: a review. Bull World Health Organ. 2007. V. 85. No. 9. P. 719-726. DOI: 10.2471/BLT.06.038414.
  • Drolet M., Bénard É., Pérez N., et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet (London, England). 2019. V. 394. No. 10197. P. 497-509. DOI: 10.1016/S0140-6736(19)30298-3.
  • Palmer T., Wallace L., Pollock K.G., et al. Prevalence of cervical disease at age 20 after immunisation with bivalent HPV vaccine at age 12-13 in Scotland: retrospective population study. BMJ. 2019. V. 365. Article ID 1161. DOI: 10.1136/BMJ.L1161.
  • Краснопольский В.И., Логутова Л.С., Зароченцева Н.В. и др. Результаты вакцинопрофилактики ВПЧ-ассоциированных заболеваний и рака шейки матки в Московской области. Российский Вестник Акушера-Гинеколога. 2015. Т. 15. №. 3. C. 9-14.
  • Kitchener H.C., Denton K., Soldan K., Crosbie E.J. Developing role of HPV in cervical cancer prevention. BMJ. 2013. V. 347. P. f4781-f4781. DOI: 10.1136/BMJ.F4781.
  • Moghadami M., Dadashpour N., Mokhtari A.M., et al. The effectiveness of the national hepatitis B vaccination program 25 years after its introduction in Iran: a historical cohort study. Brazilian J Infect Dis. 2019. V. 23. No. 6. P. 419-426. DOI: 10.1016/J.BJID.2019.10.001.
  • Mendy M., Peterson I., Hossin S., et al. Observational Study of Vaccine Efficacy 24 Years after the Start of Hepatitis B Vaccination in Two Gambian Villages: No Need for a Booster Dose. PLoS One. 2013. V. 8. No. 3. Article ID e58029. DOI: 10.1371/JOURNAL.PONE.0058029.
  • Odusanya O.O., Alufohai E., Meurice F.P., Ahonkhai V.I. Human Vaccines Five-year post vaccination efficacy of hepatitis B vaccine in rural Nigeria. Hum Vaccin. 2011. V. 625. No. 6. P. 625-629. DOI: 10.4161/hv.7.6.14990.
  • Nelson N.P., Easterbrook P.J., McMahon B.J. Epidemiology of Hepatitis B Virus Infection and Impact of Vaccination on Disease. Clin Liver Dis. 2016. V. 20. No. 4. P. 607-628. DOI: 10.1016/J.CLD.2016.06.006.
  • Gerlich W.H. Medical Virology of Hepatitis B: how it began and where we are now. Virol J. 2013. V. 10. Article ID 239. DOI: 10.1186/1743-422X-10-239.
  • Coates T., Wilson R., Patrick G., et al. Hepatitis B vaccines: assessment of the seroprotective efficacy of two recombinant DNA vaccines. Clin Ther. 2001. V. 23. No. 3. P. 392-403. DOI: 10.1016/S0149-2918(01)80044-8.
  • Yu A.S., Cheung R.C., Keeffe E.B. Hepatitis B vaccines. Infect Dis Clin North Am. 2006. V. 20. No. 1. P. 27-45. DOI: 10.1016/J.IDC.2006.01.004.
  • Shepard C.W., Simard E.P., Finelli L., et al. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev. 2006. V. 28. No. 1. P. 112-125. DOI: 10.1093/EPIREV/MXJ009.
  • World Health Organization. Hepatitis B vaccines: WHO position paper – July 2017. Wkly Epidemiol Rec. 2017. V. 92. No. 27. P. 369-392.
  • FDA. Highlights of prescribing information. Merck Sharp & Dohme Corp. 2011. P. 1-28.
  • Gonçalves A.K., Cobucci R.N., Rodrigues H.M., et al. Safety, tolerability and side effects of human papillomavirus vaccines: a systematic quantitative review. Braz J Infect Dis. 2014. V. 18. No. 6. P. 651-659. DOI: 10.1016/J.BJID.2014.02.005.
  • Niu M.T., Salive M.E., Ellenberg S.S. Neonatal deaths after hepatitis B vaccine: the vaccine adverse event reporting system, 1991-1998. Arch Pediatr Adolesc Med. 1999. V. 153. No. 12. P. 1279-1282. DOI: 10.1001/ARCHPEDI.153.12.1279.
  • Martínez-Lavín M. Hypothesis: Human papillomavirus vaccination syndrome--small fiber neuropathy and dysautonomia could be its underlying pathogenesis. Clin Rheumatol. 2015. V. 34. No. 7. P. 1165-1169. DOI: 10.1007/S10067-015-2969-Z.
  • Tourbah A., Gout O., Liblau R., et al. Encephalitis after hepatitis B vaccination: recurrent disseminated encephalitis or MS? Neurology. 1999. V. 53. No. 2. P. 396-401. DOI: 10.1212/WNL.53.2.396.
  • Stillo M., Carrillo P.S., Lopalco P.L. Safety of human papillomavirus vaccines: a review. Expert Opin Drug Saf. 2015. V. 14. No. 5. P. 697-712. DOI: 10.1517/14740338.2015.1013532.
  • Martínez-Sernández V., Figueiras A. Central nervous system demyelinating diseases and recombinant hepatitis B vaccination: A critical systematic review of scientific production. J Neurol. 2013. V. 260. No. 8. P. 1951-1959. DOI: 10.1007/S00415-012-6716-Y/FIGURES/1.
  • Macartney K.K., Chiu C., Georgousakis M., Brotherton J.M.L. Safety of human papillomavirus vaccines: a review. Drug Saf. 2013. V. 36. No. 6. P. 393-412. DOI: 10.1007/S40264-013-0039-5.
  • Poullin P., Gabriel B. Thrombocytopenic purpura after recombinant hepatitis B vaccine. Lancet (London, England). 1994. V. 344. No. 8932. Article ID 1293. DOI: 10.1016/S0140-6736(94)90777-3.
  • Souayah N., Michas-Martin P.A., Nasar A., et al. Guillain-Barré syndrome after Gardasil vaccination: data from Vaccine Adverse Event Reporting System 2006-2009. Vaccine. 2011. V. 29. N. 5. P. 886-889. DOI: 10.1016/J.VACCINE.2010.09.020.
  • Allen M.B., Cockwell P., Page R.L. Pulmonary and cutaneous vasculitis following hepatitis B vaccination. Thorax. 1993. V. 48. No. 5. P. 580-581. DOI: 10.1136/THX.48.5.580.
  • Maillefert J.F., Sibilia J., Toussirot E., et al. Rheumatic disorders developed after hepatitis B vaccination. Rheumatology (Oxford). 1999. V. 38. No. 10. P. 978-983. DOI: 10.1093/RHEUMATOLOGY/38.10.978.
  • Arnheim-Dahlström L., Pasternak B., Svanström H., et al. Autoimmune, neurological, and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark and Sweden: cohort study. BMJ. 2013. V. 347. P. f5906-f5906. DOI: 10.1136/BMJ.F5906.
  • Vautier G., Carty J.E. Acute sero-positive rheumatoid arthritis occurring after hepatitis vaccination. Br J Rheumatol. 1994. V. 33. No. 10. Article ID 991. DOI: 10.1093/RHEUMATOLOGY/33.10.991-A.
  • Woo E.J., Winiecki S.K., Ou A.C. Motor palsies of cranial nerves (excluding VII) after vaccination: reports to the US Vaccine Adverse Event Reporting System. Hum Vaccin Immunother. 2014. V. 10. No. 2. P. 301-305. DOI: 10.4161/HV.27032.
  • Albitar S., Bourgeon B., Genin R., et al. Bilateral retrobulbar optic neuritis with hepatitis B vaccination. Nephrol Dial Transplant. 1997. V. 12. No. 10. P. 2169-2170. DOI: 10.1093/NDT/12.10.2169.
  • Khatun M., Ray R.B. Mechanisms Underlying Hepatitis C Virus-Associated Hepatic Fibrosis. Cells. 2019. V. 8. No. 10. Article ID 1249. DOI: 10.3390/CELLS8101249.
  • Brady G., MacArthur G.J., Farrell P.J. Epstein–Barr virus and Burkitt lymphoma. J Clin Pathol. 2007. V. 60. No. 12. P. 1397-1402. DOI: 10.1136/JCP.2007.047977.
  • Young L.S., Dawson C.W. Epstein-Barr virus and nasopharyngeal carcinoma. Chin J Cancer. 2014. V. 33. No. 12. P. 581-590. DOI: 10.5732/CJC.014.10197.
  • Mesri E.A., Cesarman E., Boshoff C. Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer. 2010. V. 10. No. 10. P. 707-719. DOI: 10.1038/NRC2888.
  • Ratner L. Human T cell lymphotropic virus-associated leukemia/lymphoma. Curr Opin Oncol. 2005. V. 17. No. 5. P. 469-473. DOI: 10.1097/01.cco.0000174037.84903.fb.
  • Ishaq S., Nunn L. Helicobacter pylori and gastric cancer: a state of the art review. Gastroenterol Hepatol Bed Bench. 2015. V. 8. Suppl. 1. P. S6-S14. DOI: 10.22037/ghfbb.v8iSupplement.653.
  • Zilberberg J., Feinman R., Korngold R. Strategies for the identification of T cell-recognized tumor antigens in hematological malignancies for improved graft-versus-tumor responses after allogeneic blood and marrow transplantation. Biol Blood Marrow Transplant. 2015. V. 21. No. 6. P. 1000-1007. DOI: 10.1016/J.BBMT.2014.11.001.
  • Feng H., Shuda M., Chang Y., Moore P.S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008. V. 319. No. 5866. P. 1096-1100. DOI: 10.1126/SCIENCE.1152586.
  • Dalet A., Robbins P.F., Stroobant V., et al. An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc Natl Acad Sci U S A. 2011. V. 108. No. 29. P. E323- E331. DOI: 10.1073/PNAS.1101892108.
  • Chu N.J., Armstrong T.D., Jaffee E.M. Nonviral oncogenic antigens and the inflammatory signals driving early cancer development as targets for cancer immunoprevention. Clin Cancer Res. 2015. V. 21. No. 7. P. 1549-1557. DOI: 10.1158/1078-0432.CCR-14-1186.
  • Traversari C., Bruggen P. van der, Luescher I.F., et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med. 1992. V. 176. No. 5. P. 1453-1457. DOI: 10.1084/JEM.176.5.1453.
  • Hombrink P., Hassan C., Kester M.G.D., et al. Discovery of T cell epitopes implementing HLA-peptidomics into a reverse immunology approach. J Immunol. 2013. V. 190. No. 8. P. 3869-3877. DOI: 10.4049/JIMMUNOL.1202351.
  • Guo C., Manjili M.H., Subjeck J.R., et al. Therapeutic Cancer Vaccines: Past, Present and Future. Adv Cancer Res. 2013. V. 119. P. 421-475. DOI: 10.1016/B978-0-12-407190-2.00007-1.
  • Coulie P.G., Van Den Eynde B.J., Van Der Bruggen P., Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014. V. 14. No. 2. P. 135-146. DOI: 10.1038/NRC3670.
  • Riddell S.R. Progress in cancer vaccines by enhanced self-presentation. Proc Natl Acad Sci U S A. 2001. V. 98. No. 16. P. 8933-8935. DOI: 10.1073/PNAS.171326398.
  • Palucka K., Banchereau J. Dendritic cell-based cancer therapeutic vaccines. Immunity. 2013. V. 39. No. 1. P. 38-48. DOI: 10.1016/J.IMMUNI.2013.07.004.
  • Hirayama M., Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol. 2016. V. 28. No. 7. P. 319-328. DOI: 10.1093/INTIMM/DXW027.
  • Shore N.D., Mantz C.A., Dosoretz D.E., et al. Building on sipuleucel-t for immunologic treatment of castration-resistant prostate cancer. Cancer Control. 2013. V. 20. No. 1. P. 7-16. DOI: 10.1177/107327481302000103.
  • Sims R.B. Development of sipuleucel-T: Autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer. Vaccine. 2012. V. 30. No. 29. P. 4394-4397. DOI: 10.1016/J.VACCINE.2011.11.058.
  • Gardner T.A., Elzey B.D., Hahn N.M. Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum Vaccin Immunother. 2012. V. 8. No. 4. P. 534-539. DOI: 10.4161/HV.19795.
  • Higano C.S., Armstrong A.J., Sartor A.O., et al. Real-world outcomes of sipuleucel-T treatment in PROCEED, a prospective registry of men with metastatic castration-resistant prostate cancer. Cancer. 2019. V. 125. No. 23. P. 4172-4180. DOI: 10.1002/CNCR.32445.
  • Aly M., Leval A., Schain F., et al. Survival in patients diagnosed with castration-resistant prostate cancer: a population-based observational study in Sweden. Scand J Urol. 2020. V. 54. No. 2. P. 115-121. DOI: 10.1080/21681805.2020.1739139.
  • Kantoff P.W., Higano C.S., Shore N.D., et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N Engl J Med. 2010. V. 363. No. 5. P. 411-422. DOI: 10.1056/NEJMOA1001294.
  • Anassi E., Ndefo U.A. Sipuleucel-T (Provenge) Injection: The First Immunotherapy Agent (Vaccine) For Hormone-Refractory Prostate Cancer. Pharm Ther. 2011. V. 36. No. 4. P. 197-202.
  • Huber M.L., Haynes L., Parker C., Iversen P. Interdisciplinary Critique of Sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst. 2012. V. 104. No. 4. P. 273-279. DOI: 10.1093/JNCI/DJR514.
  • Cui Y., Yang X., Zhu W., et al. Immune response, clinical outcome and safety of dendritic cell vaccine in combination with cytokine-induced killer cell therapy in cancer patients. Oncol Lett. 2013. V. 6. No. 2. P. 537-541. DOI: 10.3892/OL.2013.1376.
  • Saadeldin M.K., Abdel-Aziz A.K., Abdellatif A. Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis. Med Hypotheses. 2021. V. 146. Article ID 110365. DOI: 10.1016/J.MEHY.2020.110365.
  • Anguille S., Smits E.L., Lion E., et al. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014. V. 15. No. 7. P. e257-e267. DOI: 10.1016/S1470-2045(13)70585-0.
  • Skwarczynski M., Toth I. Peptide-based synthetic vaccines. Chem Sci. 2016. V. 7. No. 2. P. 842-854. DOI: 10.1039/C5SC03892H.
  • Purcell A.W., McCluskey J., Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov. 2007. V. 6. No. 5. P. 404-414. DOI: 10.1038/NRD2224.
  • Liu T.-Y., M. Hussein W., Toth I., Skwarczynski M. Advances in peptide-based human papillomavirus therapeutic vaccines. Curr Top Med Chem. 2012. V. 12. No. 14. P. 1581-1592. DOI: 10.2174/156802612802652402.
  • Parmiani G., Russo V., Maccalli C., et al. Peptide-based vaccines for cancer therapy. Hum Vaccin Immunother. 2014. V. 10. No. 11. P. 3175-3178. DOI: 10.4161/HV.29418.
  • Moyle P.M., Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 2013. V. 8. No. 3. P. 360-376. DOI: 10.1002/CMDC.201200487.
  • Pearson M.S., Pickering D.A., Tribolet L., et al. Neutralizing antibodies to the hookworm hemoglobinase Na-APR-1: implications for a multivalent vaccine against hookworm infection and schistosomiasis. J Infect Dis. 2010. V. 201. No. 10. P. 1561-1569. DOI: 10.1086/651953.
  • Novik A.V., Danilova A.B., Sluzhev M.I., et al. An Open-Label Study of the Safety and Efficacy of Tag-7 Gene-Modified Tumor Cells-Based Vaccine in Patients with Locally Advanced or Metastatic Malignant Melanoma or Renal Cell Cancer. Oncologist. 2020. V. 25. No. 9. P. e1303– e1317. DOI: 10.1634/THEONCOLOGIST.2020-0160.
  • Flynn M., Pickering L., Larkin J., Turajlic S. Immune-checkpoint inhibitors in melanoma and kidney cancer: from sequencing to rational selection. Ther Adv Med Oncol. 2018. V. 10. Article ID 1758835918777427. DOI: 10.1177/1758835918777427.
  • Svedman F.C., Pillas D., Taylor A., et al. Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe – a systematic review of the literature. Clin Epidemiol. 2016. V. 8. P. 109-122. DOI: 10.2147/CLEP.S99021.
  • Garfield K., LaGrange C.A. Renal Cell Cancer. Treasure Island (FL): StatPearls Publishing. 2022.
  • Nelde A., Rammensee H.G., Walz J.S. The Peptide Vaccine of the Future. Mol Cell Proteomics. 2021. V. 20. Article ID 100022. DOI: 10.1074/MCP.R120.002309.
  • Yoshida K., Noguchi M., Mine T., et al. Characteristics of severe adverse events after peptide vaccination for advanced cancer patients: Analysis of 500 cases. Oncol Rep. 2010. V. 25. No. 1. P. 57-62. DOI: 10.3892/OR_00001041/HTML.
  • Srivastava I.K., Liu M.A. Gene vaccines. Ann Intern Med. 2003. V. 138. No. 7. P. 550-559. DOI: 10.7326/0003-4819-138-7-200304010-00011.
  • Khan K.H. DNA vaccines: roles against diseases. Germs. 2013. V. 3. No. 1. P. 26-35. DOI: 10.11599/GERMS.2013.1034.
  • Stegantseva M.V., Meleshko A.N. Anticancer DNA vaccination: principle and Perspectives of the method. Med Immunol. 2017. V. 19. No. 2. P. 145-156. DOI: 10.15789/1563-0625-2017-2-145-156.
  • Popov Y.A., Mikshis N.I. Genetic (DNA) vaccines. Probl Dangerious Infect. 2010. V. 105. P. 20-24. DOI: 575:615.371/.372.
  • Herweijer H., Wolff J.A. Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. 2003. V. 10. No. 6. P. 453-458. DOI: 10.1038/SJ.GT.3301983.
  • Park K.S., Sun X., Aikins M.E., Moon J.J. Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev. 2021. V. 169. P. 137-151. DOI: 10.1016/J.ADDR.2020.12.008.
  • Batty C.J., Heise M.T., Bachelder E.M., Ainslie K.M. Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Adv Drug Deliv Rev. 2021. V. 169. P. 168-189. DOI: 10.1016/J.ADDR.2020.12.006.
  • Lundstrom K. Application of Viral Vectors for Vaccine Development with a Special Emphasis on COVID-19. Viruses. 2020. V. 12. No. 11. Article ID 1324. DOI: 10.3390/V12111324.
  • Ura T., Okuda K., Shimada M. Developments in Viral Vector-Based Vaccines. Vaccines. 2014. V. 2. No. 3. P. 624-641. DOI: 10.3390/VACCINES2030624.
  • Kadali R.A.K., Janagama R., Yedlapati S.H., et al. Side effects of messenger RNA vaccines and prior history of COVID-19, a cross-sectional study. Am J Infect Control. 2021. V. 50. No. 1. P. 8-14. DOI: 10.1016/J.AJIC.2021.10.017.
  • Hu Z., Leet D.E., Allesøe R.L., et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med. 2021. V. 273. No. 3. P. 515-525. DOI: 10.1038/s41591-020-01206-4.
Еще
Статья научная