Regularity of the transform of Laplace and the transfom of Fourier
Автор: Pavlov Andrey V.
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Математика и механика
Статья в выпуске: 4 т.23, 2020 года.
Бесплатный доступ
Regularity of the transform of Laplace in the opened area of 0 is proved with the help of some methods of the transform of Fourier. The class of the transform of Laplace from the transform of Fourier is considered from some functions without a regularity in . The functions are regular in the opened area of 0. It is proved that the sine transform of Fourier from the cosine transform of Fourier is equal to the cosine transform from the sine transform of Fourier on the module.
Transform of fourier, transform of laplace, regularity of the double transform of laplace, transposition of the sine and cosine transforms of fourier
Короткий адрес: https://sciup.org/149129880
IDR: 149129880 | DOI: 10.15688/mpcm.jvolsu.2020.4.2
Список литературы Regularity of the transform of Laplace and the transfom of Fourier
- Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Moscow, Nauka Publ, 1976. 544 p.
- Lavrentiev M.A., Shabat B.V. The Methods of Theory Functions of Complex Variable. Moscow, Nauka Publ, 1987. 688 p.
- Pavlov A.V. About the Equality of the Transform of Laplace to the Transform of Fourier. Issues of Analysis, 2016, vol. 23, no. 1, pp. 21-30.
- Pavlov A.V. The Fourier Transform and New Inversion Formula of the Laplace Transform. Math. notes, 2011, vol. 90, no. 6, pp. 793-796.
- Pavlov A.V. The New Inversion of Laplace Transform. Journal of Mathem. and Syst. Scien., 2014, vol. 4, no. 3, pp. 197-201.
- Pavlov A.V. The Regularity of the Laplace Transform. Math. Phys. and Comp. Model., 2019, vol. 22, no. 1, pp. 5-11.
- Pavlov A.V. Permutability of Cosine and Sine Fourier Transforms. Journal Moscow University Mathematics Bulletin, 2019, vol. 74, no. 2, pp. 75-78.
- Fihtengoltz G.M. The Course of Differential and Integral Calculus, vol. II. Moscow, Nauka Publ, 1969. 800 p.