Самовосстанавливающийся бетон. Обзор зарубежных публикаций

Бесплатный доступ

Бетон и железобетон - основные конструкционные материалы, воспринимающие высокие нагрузки, многократное попеременное замораживание - оттаивание, коррозионные процессы и т. д., в результате чего возникает трещинообразование. Рассмотрены компоненты, необходимые для получения самовосстанавливающихся бетонов: виды бактерий и требования к ним, питательные среды, носители, прекурсоры (вещества, призванные интенсифицировать кристаллизацию СаСО3). Приведены реакции образования карбоната кальция при гидролизе мочевины и через бактериальное дыхание, приводящее к выделению СО2. Установлено, что карбонатная биоминерализация положительно влияет на физико-технические свойства бетонов: прочность при сжатии, изгибе и растяжении, стойкость к коррозии.

Еще

Самовосстанавливающийся бетон, карбонатная биоминерализация, ликвидация трещинообразования

Короткий адрес: https://sciup.org/142238238

IDR: 142238238   |   DOI: 10.53980/24131997_2023_2_72

Список литературы Самовосстанавливающийся бетон. Обзор зарубежных публикаций

  • Голованов В. Голландский микробиолог разработал самовосстанавливающийся бетон. 17.05.2015. – URL: https://geektimes.ru/post/250502 (дата обращения: 15.04.2022).
  • Wiktor V., Jonkers H.M. Bacteria-based concrete: from concept to market // Smart Materials and Structures. 2016. – Vol. 25(8). – P. 084006.
  • Victoria S.W., Van Passen LA., Marien P.H. Microbial Carbonate Precipitation as a Soil Improvement Technique // Geomicrobiology Journal.  2007. – Vol. 24(5). – P. 417–423.
  • Sarmast M., Farpoor M.H., Sarcheshmehpoor M.H., et al. Micromorphological and Biocalcification Effects of Sporosarcina pasteurii and Sporosarcina ureae in Sandy Soil Columns // Journal of Agricultural Science and Technologyю  2014. – Vol. 16(3). – P. 681–693.
  • Achal V., Mukherjee A., Basu P.C. et al. Lactose Mother Liquor as an Alternative Nutrient Source for Microbial Concrete Production by Sporosarcina pasteurii // J. Ind. Microbiol. Biotechnolю  2009. – Vol. 36. – P. 433–438.
  • Achal V., Mukherjee A., Basu P. C. et al. Strain Improvement of Sporosarcina pasteurii for Enhanced Urease and Calcite Production // J. Ind. Microbiol. Biotechnolю  2009. – Vol. 36. – P. 981–988.
  • Whiffin V.S., Van Passen L.A., Harkes M. P. Microbial Carbonate Precipitation as a Soil Improvement Technique // Geomicrobiol. J. – 2007. – Vol. 24. – P. 1–7.
  • Day J. L., Ramakrishnan V., Bang S.S. Microbiologically Induced Sealant for Concrete Crack Remediation // In Proc. of 16th Engineering Mechanics Conference, Seattle. – 2003. – P. 1–8.
  • Keun-Hyeok Y., Hyun-Sub Y., Sang-Seob L. Feasibility tests toward the development of protective biological coating mortars // Constr. and Build. Mater.  2018. – Vol. 181. – P. 1–11.
  • Joshi Sumit, Goyal Shweta, Mukherjee Abhijit et al. Protection of concrete structures under sulfate environments by using calcifying bacteria // Constr. and Build. Mater.  2019. – Vol. 209. – P. 156–166.
  • Zhang J., Zhao C., Zhou A. et al. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs // Constr. and Build. Mater. – 2019. – Vol. 221. – P. 815–822.
  • De Muynck W., Debrouwer D., De Belie N. et al. Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials // Cement Concrete Res. – 2008. – Vol. 38 – P. 1005–1014.
  • Siddique R., Chahal N.K. Effect of Ureolytic Bacteria on Concrete Properties // Constr. and Build. Mater. – 2011. – Vol. 25. – P. 3791–3801.
  • McCo D., Cetin A., Hausinger R.P. Characterization of Urease from Sporosarcina ureae // Arch. Microbiol. – 1992. – Vol. 157. – P. 411–416.
  • Tayebani B., Mostofinejad D. Self-healing bасtеriаlmоrtаr with improved chloride permeability and electrical resistance // Constr. and Build. Mater. – 2019. – Vol. 208. – P. 75–86.
  • Zhang Y., Guo H.X., Cheng X.H. Role of calcium sources in the strength and microstructure of microbial mortar // Constr. and Build. Mater. – 2015. – Vol. 77. – P. 160–167.
  • Omoregie A., Ngu L.H., Nissom P.M. et al. Low-cost cultivation of Sporosarcinapasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application // Biocatalysis and Agricultural Biotechnology. – 2019. – Vol. 17. – P. 247–255.
  • Mian L., Chunxiang Q., Ruiyang L. et al. Efficiency of concrete crack-healing based on biological carbonate precipitation // J. Wuhan Univ. Technol. Mater. Sci. Ed. – 2015. – Vol. 30(6) – P. 1265–1259.
  • Klein J., Kluge M. Immobilization of microbial cells in polyurethane matrices // Biotechnol Lett. 1981. – N 3. – P. 65–70.
  • Wiktor V., Jonkers H.M. Quantification of crack-healing in novel bacteria-based self-healing concrete // Cement & Concrete Composites. – 2011. – Vol. 33(7). – P. 763–770.
  • Wang J., Van Tittelboom K., De Belie N. et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete // Constr. and Build. Mater. – 2012. – Vol. 26(1). – P. 532–540.
  • Xu J., Wang X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material // Constr. and Build. Mater.  2018. – Vol. 167. – P. 1–14.
  • Formia A., Sara I. The Dual Cem project: evaluation of healing agents and development of encapsulation technologies for self-healing concrete // CementInt. – 2015. – Vol. 13(5). – P. 70-72, 74–77.
  • Wiktor V., Jonkers H.M. Bacteria-based concrete: from concept tо mаrkеt // Smart Mater. And Struct. – 2016. – Vol. 25. – P. 084006.
  • Gupta S., Pang Sze D., Kua Harn W. Autonomous healing in concrete by bio-based healingagents A review // Constr. and Build. Mater. – 2017. – Vol. 146. – P. 419–428.
  • Wiktor V., Jonkers H.M. Influence of bio-immobilized lime stone powder on self-healing behavior of cementitious composites // Conference Series: Materials Science and Engineering. – 2018. – Vol. 431.
  • Achal V., Reddy M.S., Mukerjee A. Biogenic treatment improves the durability and remediates the cracks of concrete structures // Construction and Building Materials. – 2013. – Vol. 48. – P. 1–5.
  • Ramakrishnan V. Performance characteristics of bacterial concrete – a smart biomaterial // In: Proceedings of the first international conference on recent advances in concrete technology, Washington. – 2007. – P. 67–68.
  • Shradha J., Bidyadhar B., Kishor Chandra P. et al. Impact of Bacillus subtilis bacterium on the properties of concrete // Materials Today: Proceedings. – 2020. – Vol. 32. – P. 651–656.
  • Sumit J., Shweta G., Abhijit M. et al. Protection of concrete structures under sulfate environments by using calcifying bacteria // Construction and Building Materials. – 2019. – Vol. 209. – P. 156–166.
  • Tianwen Z., Yilin S., Hengyi Z. et al. Low alkali sulpho-aluminate cement encapsulated microbial spores for self-healing cement-based materials // Biochemical Engineering Journal. – 2020. – Vol. 163.
  • Jing X., Xianzhi W. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material // Construction and Building Materials. – 2018.– Vol. 163. – P. 1–14.
  • Zhang J., Zhao C., Zhou L. et al. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs // Construction and Building Materials. – 2019. – Vol. 224. – P. 815–822.
Еще
Статья научная