Uniqueness theorem of reconstruction of preimage by its image under degenerate mapping

Автор: Klyachin Vladimir A., Grigorieva Elena G.

Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu

Рубрика: Математика и механика

Статья в выпуске: 2 т.25, 2022 года.

Бесплатный доступ

One of the urgent problems in the construction of computer vision systems is the problem of determining the spatial orientation and spatial position of an object from a photograph. For example, this task is especially important for autonomous driving systems, where the positioning of nearby vehicles is a key issue for autonomous vehicles in an urban environment. In this regard, for example, in 2019, the Baidu Robotics and Autonomous Driving Laboratory together with Peking University, set an appropriate task for the Kaggle community (https://www.kaggle.com/c/pku-autonomous-driving) and provided more than 60,000 copies of three-dimensional cars marked from 5,277 real images. In this article, we formulate some results that are the mathematical basis for substantiating methods for solving the abovementioned reconstruction problems in computer vision systems.

Еще

Central projection, degenerate maps, preimage restoration, transformation groups, computer vision systems

Короткий адрес: https://sciup.org/149140264

IDR: 149140264   |   DOI: 10.15688/mpcm.jvolsu.2022.2.2

Список литературы Uniqueness theorem of reconstruction of preimage by its image under degenerate mapping

  • Klyachin V.A., Grigoryeva E.G. Algoritm avtomaticheskogo opredeleniya parametrov orientatsii kamery v prostranstve na osnove kharakternykh elementov fotosnimka [Algorithm for Automatic Determination of Camera Orientation Parameters in Space Based on the Characteristic Elements of the Photograph]. Tendentsii razvitiya nauki i obrazovaniya, 2018, vol. 45, no. 6, pp. 10-20. DOI: https://doi.org/10.18411/lj-12-2018-125.
  • Klyachin A.A., Klyachin V.A. Algoritm vosstanovleniya poverkhnosti obyekta po ego izobrazheniyu [Algorithm for Restoring the Object Surface From Its Image]. Matematicheskaya fizika i kompyuternoe modelirovanie [Mathematical Physics and Computer Simulation], 2021, vol. 24, no. 1, pp. 16-24. DOI: https://doi.org/10.15688/mpcm.jvolsu.2021.1.2.
  • Gordeev A.Y., Klyachin V.A., Kurbanov E.R., Driaba A.Y. Autonomous Mobile Robot with AI Based on Jetson Nano. Proceedings of the Future Technologies Conference (FTC- 2020). Cham, Springer, 2021, vol. 1, pp. 190-204. DOI: https://doi.org/10.1007/978-3-030-63128-4_15.
  • Gordeev A.Y., Klyachin V.A. Determination of the Spatial Position of Cars on the Road Using Data from a Camera or DVR. “Smart Technologies” for Society, State and Economy. ISC 2020. Lecture Notes in Networks and Systems. Cham, Springer, 2020, vol. 155, pp. 172-180. DOI: https://doi.org/10.1007/978-3-030-59126-7_20.
  • Klyachin V.A., Grigorieva E.G. A 3D Reconstruction Algorithm of a Surface of Revolution from Its Projection. Journal of Applied and Industrial Mathematics, 2020, vol. 14, no. 1, pp. 85-91.
  • Klyachin A.A., Klyachin V.A. Existence and Uniqueness Theorems for Solutions of Inverse Problems of Projective Geometry for 3D Reconstruction from Photographs. Chebyshevskii sbornik, 2020, vol. 21, no. 4, pp. 117-128.
  • Kobayashi S., Nomizu K. Foundations of Differential Geometry. New York, London, John Wiles and Sons, Inc., 1963. 348 p.
Еще
Статья научная