Technological processes and material science. Рубрика в журнале - Siberian Aerospace Journal

Публикации в рубрике (82): Technological processes and material science
все рубрики
Thermal emission and pyroelectric current in manganese chalcogenides

Thermal emission and pyroelectric current in manganese chalcogenides

Sitnikov M.N., Kharkov A.M., Aplesnin S.S.

Статья научная

Manganese chalcogenides, which are promising for the manufacture of thermoelements, are being studied. The current is measured in the temperature range of 80–500 K, in the absence of external voltage, which can be caused by a temperature gradient (thermopower), a change in electrical polarization (pyroelectric current), piezoelectric current (when the sample is deformed, a potential difference arises) or thermionic emission (thermal emission current) . Temperatures of current anomalies and their relationship with thermionic current and polarization current are found. A change in electrical polarization with temperature will cause a pyroelectric current. Compensation for excess electrical charge will result in local electrical polarization. Partial decompensation will cause the formation of an electric field in the sample. The critical temperatures for the disappearance of electric polarization were determined for different concentrations. In the region of concentration of thulium ions flowing through the lattice, the activation nature of the thermionic current was established and the activation energy was found. The pyroelectric current has a smaller value compared to the thermionic current. The current mechanism is determined by the emission of electrons from deep traps and the temperatures of the maximum thermionic current correlate with the temperatures at which IR absorption disappears. The electric current density and its value depend on the type of substituted rare earth element are calculated.

Бесплатно

Water cleaning from metal ions by electrochemical treatment by using the diaphragm using of a diagram electrolyzer for cleaning sewage from hexavalent chromium

Water cleaning from metal ions by electrochemical treatment by using the diaphragm using of a diagram electrolyzer for cleaning sewage from hexavalent chromium

Shestakov I. Y., Vasilyeva Y. A.

Статья научная

In the production of space rocket technology, electrochemical processes are used, as a result there is pollution of sewage by metal ions. The strict requirements of environmental authorities do not allow sewage, containing metal ions with concentration exceeding the maximum permissible values, to be discharged directly into reservoir or sewers. The greatest difficulties are caused by the purification of water from hexavalent chromium. The proposed methods for purifying from hexavalent chromium, electrocoagulation method, galvanocoagulation method, sorption methods, combined methods, have some disadvantages, such as: significant energy consumption, significant consumption of soluble metal anodes, passivation of the anodes, need for large excesses of reagent (iron salts), large amounts of precipitate and the complexity of its dehydration, high cost and scarcity of sorbents, high consumption of reagents for the regeneration of sorbents, and others. This work shows equipment for experiments, including a diaphragm electrolyzer with a coaxial arrangement of electrodes. Formulas for calculating the chromium ions flux due to migration and diffusion are presented. The difference between the calculated amperage from the practical one is 25 %, and the theoretical degree of purification from the real one is 4 %, which confirms the effectiveness of the proposed cleaning method. The concentration of chromium anions was determined by atomic absorption spectroscopy. The degree of purification of water from chromium ranged from 84 to 96 %. The highest degree of purification (96 %) was obtained with an electrolysis duration of 29 minutes.

Бесплатно

Журнал