Статьи журнала - Информатика и автоматизация (Труды СПИИРАН)

Все статьи: 225

Анализ эффективности каскадного кодирования для повышения выносливости многоуровневой NAND флеш-памяти

Анализ эффективности каскадного кодирования для повышения выносливости многоуровневой NAND флеш-памяти

Андрей Николаевич Трофимов, Феликс Александрович Таубин

Статья

Повышение плотности записи в современных чипах NAND флеш-памяти, достигаемое как за счет уменьшающегося физического размера ячейки, так и благодаря возрастающему количеству используемых состояний ячейки, сопровождается снижением надежности хранения данных – вероятности ошибки, выносливости (числа циклов перезаписи) и времени хранения. Стандартным решением, позволяющим повысить надежность хранения данных в многоуровневой флеш-памяти, является введение помехоустойчивого кодирования. Эффективность введения помехоустойчивого кодирования в существенной степени определяется адекватностью модели, формализующей основные процессы, связанные с записью и чтением данных. В работе приводится описание основных искажений, сопровождающих процесс записи/считывания в NAND флеш-памяти, и явный вид плотностей распределения результирующего шума. В качестве аппроксимации полученных плотностей распределения результирующего шума рассматривается модель на основе композиции гауссова распределения и распределения Лапласа, достаточно адекватно отражающая плотности распределения результирующего шума при большом числе циклов перезаписи. Для этой модели проводится анализ помехоустойчивости каскадных кодовых конструкций с внешним кодом Рида-Соломона и внутренним многоуровневым кодом, состоящим из двоичных компонентных кодов. Выполненный анализ позволяет получить обменные соотношения между вероятностью ошибки, плотностью записи и числом циклов перезаписи. Полученные обменные соотношения показывают, что предложенные конструкции позволяют за счет очень незначительного снижения плотности записи обеспечить увеличение граничного значения числа циклов перезаписи (определяемого производителем) в 2–2.5 раза при сохранении требуемого значения вероятности ошибки на бит.

Бесплатно

Аналитический обзор аудиовизуальных систем для определения средств индивидуальной защиты на лице человека

Аналитический обзор аудиовизуальных систем для определения средств индивидуальной защиты на лице человека

Анастасия Александровна Двойникова, Максим Викторович Маркитантов, Елена Витальевна Рюмина, Дмитрий Александрович Рюмин, Алексей Анатольевич Карпов

Статья

Начиная с 2019 года все страны мира столкнулись со стремительным распространением пандемии, вызванной коронавирусной инфекцией COVID-19, борьба с которой продолжается мировым сообществом и по настоящее время. Несмотря на очевидную эффективность средств индивидуальной защиты органов дыхания от заражения коронавирусной инфекцией, многие люди пренебрегают использованием защитных масок для лица в общественных местах. Поэтому для контроля и своевременного выявления нарушителей общественных правил здравоохранения необходимо применять современные информационные технологии, которые будут детектировать защитные маски на лицах людей по видео- и аудиоинформации. В статье приведен аналитический обзор существующих и разрабатываемых интеллектуальных информационных технологий бимодального анализа голосовых и лицевых характеристик человека в маске. Существует много исследований на тему обнаружения масок по видеоизображениям, также в открытом доступе можно найти значительное количество корпусов, содержащих изображения лиц как без масок, так и в масках, полученных различными способами. Исследований и разработок, направленных на детектирование средств индивидуальной защиты органов дыхания по акустическим характеристикам речи человека пока достаточно мало, так как это направление начало развиваться только в период пандемии, вызванной коронавирусной инфекцией COVID-19. Существующие системы позволяют предотвратить распространение коронавирусной инфекции с помощью распознавания наличия/отсутствия масок на лице, также данные системы помогают в дистанционном диагностировании COVID-19 с помощью обнаружения первых симптомов вирусной инфекции по акустическим характеристикам. Однако, на сегодняшний день существует ряд нерешенных проблем в области автоматического диагностирования симптомов COVID-19 и наличия/отсутствия масок на лицах людей. В первую очередь это низкая точность обнаружения масок и коронавирусной инфекции, что не позволяет осуществлять автоматическую диагностику без присутствия экспертов (медицинского персонала). Многие системы не способны работать в режиме реального времени, из-за чего невозможно производить контроль и мониторинг ношения защитных масок в общественных местах. Также большинство существующих систем невозможно встроить в смартфон, чтобы пользователи могли в любом месте произвести диагностирование наличия коронавирусной инфекции. Еще одной основной проблемой является сбор данных пациентов, зараженных COVID-19, так как многие люди не согласны распространять конфиденциальную информацию.

Бесплатно

Аналитический обзор методов автоматического анализа экстралингвистических компонентов спонтанной речи

Аналитический обзор методов автоматического анализа экстралингвистических компонентов спонтанной речи

Анастасия Андреевна Поволоцкая, Алексей Анатольевич Карпов

Статья

Точность систем автоматического распознавания спонтанной речи далека от тех, которые демонстрируют системы распознавания подготовленной речи. Обусловлено это тем, что спонтанная речь не характеризуется той плавностью и отсутствием сбоев, что подготовленная. Спонтанная речь варьируется от диктора к диктору: отличное произношение фонем, наличие пауз, речевых сбоев и экстралингвистических компонентов (смех, кашель, чихание, и цыканье при выражении эмоции раздражения и др.) прерывают плавность вербальной речи. Экстралингвистические компоненты очень часто несут важную паралингвистическую информацию, поэтому для систем автоматического распознавания спонтанной речи важно распознавать подобные явления в потоке речи. В данном обзоре проанализированы научные работы, посвященные проблеме автоматического анализа экстралингвистических компонентов спонтанной речи. Рассмотрены и описаны как отдельные методы и подходы по распознаванию экстралингвистических компонентов в потоке речи, так и работы, связанные с многоклассовой классификацией изолированно записанных экстралингвистических компонентов. Наиболее распространенными методами анализа экстралингвистических компонентов являются нейронные сети, такие как глубокие нейронные сети и сети на основе моделей-трансформеров. Приведены основные понятия, относящиеся к термину экстралингвистические компоненты, предложена оригинальная систематизация экстралингвистических компонентов в русском языке, описаны корпуса и базы данных звучащей разговорной речи как на русском, так и на других языках, также приведены наборы данных экстралингвистических компонентов, записанных изолированно. Точность распознавания экстралингвистических компонентов повышается при соблюдении следующих условия работы с речевым сигналом: предобработка аудиосигналов вокализаций показала повышение точности классификации отдельно записанных экстралингвистических компонентов; учет контекста (анализ нескольких фреймов речевого сигнала) и использовании фильтров для сглаживания временных рядов после извлечения векторов признаков показали повышение точности при пофреймовом анализе речевого сигнала со спонтанной речью.

Бесплатно

Аналитический обзор методов решения проблемы малых наборов данных при создании систем автоматического распознавания речи для малоресурсных языков

Аналитический обзор методов решения проблемы малых наборов данных при создании систем автоматического распознавания речи для малоресурсных языков

Ирина Сергеевна Кипяткова, Ильдар Амирович Кагиров

Статья

В статье рассматриваются основные методы решения проблемы малых наборов обучающих данных для создания автоматических систем распознавания речи для так называемых малоресурсных языков. Рассматривается понятие малоресурсных языков и формулируется рабочая дефиниция на основании ряда работ по этой тематике. Определены основные трудности, связанные с применением классических схем автоматического распознавания речи к материалу малоресурсных языков, и очерчен круг основных методов, использующихся для решения обозначенных проблем. В статье подробно рассматриваются методы аугментации данных, переноса знаний и сбора речевого материала. В зависимости от конкретной задачи, выделяются методы аугментации аудиоматериала и текстовых данных, переноса знаний и мультизадачного обучения. Отдельный раздел статьи посвящен существующему информационному обеспечению, базам данных и основным принципам их организации с точки зрения работы с малоресурсными языками. Делаются выводы об оправданности методов аугментации данных и переноса знаний для языков с минимальным информационным обеспечением. В случае полного отсутствия данных для конкретного языка и родительских моделей структурно схожих языков предпочтительным вариантом является сбор новой базы данных, в том числе, при помощи краудсорсинга. Многозадачные модели переноса знаний оказываются эффективными в том случае, если исследователь располагает набольшими наборами данных. Если доступны данные по языку с достаточными ресурсами, предпочтительной является работа с языковой парой. Сделанные в результате данного обзора выводы в дальнейшем предполагается применить при работе с малоресурсным карельским языком, для которого авторы статьи создают систему автоматического распознавания речи.

Бесплатно

Аналитический обзор подходов к обнаружению вторжений, основанных на федеративном обучении: преимущества использования и открытые задачи

Аналитический обзор подходов к обнаружению вторжений, основанных на федеративном обучении: преимущества использования и открытые задачи

Евгения Сергеевна Новикова, Елена Владимировна Федорченко, Игорь Витальевич Котенко, Иван Иванович Холод

Статья

Для обеспечения точного и своевременного реагирования на различные типы атак системы обнаружения вторжений собирают и анализируют большое количество данных, которые могут включать в том числе и информацию с ограниченным доступом, например, персональные данные или данные, представляющие коммерческую тайну. Следовательно, такие системы могут быть рассмотрены как источник рисков, связанных с обработкой конфиденциальной информации и нарушением ее безопасности. Применение парадигмы федеративного обучения для построения аналитических моделей обнаружения атак и аномалий может значительно снизить такие риски, поскольку данные, генерируемые локально, не передаются какой-либо третьей стороне, а обучение модели осуществляется локально – на источниках данных. Использование федеративного обучения для обнаружения вторжений позволяет решить проблему обучения на данных, которые принадлежат различным организациям, и которые в силу необходимости обеспечения защиты коммерческой или другой тайны, не могут быть выложены в открытый доступ. Таким образом, данный подход позволяет также расширить и разнообразить множество данных, на которых обучаются аналитические модели анализа и повысить тем самым уровень детектируемости разнородных атак. Благодаря тому, что этот подход способен преодолеть вышеупомянутые проблемы, он активно используется для проектирования новых подходов к обнаружению вторжений и аномалий. Авторы систематизировано исследуют существующие решения для обнаружения вторжений и аномалий на основе федеративного обучения, изучают их преимущества, а также формулируют открытые проблемы, связанные с его применением на практике. Особое внимание уделяется архитектуре предлагаемых систем, применяемым методам и моделям обнаружения вторжений, а также обсуждаются подходы к моделированию взаимодействия между множеством пользователей системы и распределению данных между ними. В заключении авторы формулируют открытые задачи, требующие решения для применения систем обнаружения вторжений, основанных на федеративном обучении, на практике.

Бесплатно

Аналитический обзор подходов к распределению задач в группах мобильных роботов на основе технологий мягких вычислений

Аналитический обзор подходов к распределению задач в группах мобильных роботов на основе технологий мягких вычислений

Олег Владимирович Даринцев, Айрат Барисович Мигранов

Статья

Рассматривается использование различных типов эвристических алгоритмов на основе технологий мягких вычислений для распределения задач в группах мобильных роботов, выполняющих односложные операции в едином рабочем пространстве: генетические алгоритмы, муравьиные алгоритмы и искусственные нейронные сети. Показано, что данная задача является NP-сложной и ее решение прямым перебором для большого числа заданий невозможно. Исходная задача сведена к типовым NP-полным задачам: обобщенной задаче поиска оптимальной группы замкнутых маршрутов от одного депо и задаче коммивояжера. Представлены описание каждого из выбранных алгоритмов и сравнение их характеристик. Приводится пошаговый алгоритм работы с учетом выбранных генетических операторов и их параметров при заданном объеме популяции. Представлена общая структура разработанного алгоритма, позволяющего достаточно эффективно решить многокритериальную оптимизационную задачу с учетом временных затрат и интегрального критерия эффективности роботов, учитывающего энергетические затраты, функциональную насыщенность каждого агента группы и т.д. Показана возможность решения исходной задачи с использованием муравьиного алгоритма и обобщенного поиска оптимальной группы замкнутых маршрутов. Для многокритериальной оптимизации показана возможность линейной свертки полученного векторного критерия оптимальности за счет введения дополнительных параметров, характеризующих групповое управление: общее КПД функционирования всех роботов, затраты энергии на функционирование группы поддержки и энергия на размещение одного робота на рабочем поле. Для решения задачи распределения заданий с использованием нейронной сети Хопфилда произведено ее представление в виде графа, полученного в ходе перехода от обобщенной задачи поиска оптимальной группы замкнутых маршрутов от одного депо к задаче коммивояжера. Показателем качества выбран суммарный путь, пройденный каждым из роботов группы.

Бесплатно

Аналитический обзор систем автоматического определения депрессии по речи

Аналитический обзор систем автоматического определения депрессии по речи

Алёна Николаевна Величко, Алексей Анатольевич Карпов

Статья

В последние годы в медицинской и научно-технической среде возрос интерес к задаче автоматического определения наличия депрессивного состояния у людей. Депрессия является одним из самых распространенных психических заболеваний, непосредственно влияющих на жизнь человека. В данном обзоре представлены и проанализированы работы за последние два года на тему определения депрессивного состояния у людей. Приведены основные понятия, относящиеся к определению депрессии, описаны как одномодальные, так и многомодальные корпусы, содержащие записи информантов с установленным диагнозом депрессии, а также записи контрольных групп, людей без депрессии. Рассмотрены как теоретические исследования, так и работы, в которых описаны автоматические системы для определения депрессивного состояния — от одномодальных до многомодальных. Часть рассмотренных систем решает задачу регрессивной классификации, предсказывая степень тяжести депрессии (отсутствие, слабая, умеренная, тяжелая), а другая часть – задачу бинарной классификации, предсказывая наличие заболевания у человека или его отсутствие. Представлена оригинальная классификация методов вычисления информативных признаков по трем коммуникативным модальностям (аудио, видео и текстовая информация). Описаны современные методы, используемые для определения депрессии в каждой из модальностей и в совокупности. Наиболее популярными методами моделирования и распознавания депрессии в рассмотренных работах являются нейронные сети. В ходе аналитического обзора выявлено, что основными признаками депрессии считаются психомоторная заторможенность, которая влияет на все коммуникативные модальности, и сильная корреляция с аффективными величинами валентности, активации и доминации, при этом наблюдается обратная корреляция между депрессией и агрессией. Выявленные корреляции подтверждают взаимосвязь аффективных расстройств с эмоциональными состояниями человека. В множестве рассмотренных работ наблюдается тенденция объединения модальностей для улучшения качества определения депрессии.

Бесплатно

Аппроксимация временных рядов индексов вегетации (NDVI и EVI) для мониторинга сельхозкультур (посевов) Хабаровского края

Аппроксимация временных рядов индексов вегетации (NDVI и EVI) для мониторинга сельхозкультур (посевов) Хабаровского края

Алексей Сергеевич Степанов, Елизавета Андреевна Фомина, Любовь Викторовна Илларионова, Константин Николаевич Дубровин, Денис Владимирович Федосеев

Статья

Аппроксимация рядов сезонного хода индексов вегетации является основой для эффективного мониторинга сельскохозяйственных культур, их идентификации и автоматизированной классификации пахотных земель. Для пахотных земель Хабаровского края в период с мая по октябрь 2021 года по мультиспектральным снимкам Sentinel-2A (20 м) с использованием маски облачности были построены временные ряды NDVI и EVI. Для приближения временных рядов были использованы пять видов аппроксимирующих функций: функция Гаусса; двойная гауссиана; двойная синусоида; ряд Фурье; двойная логистическая. Были построены и рассчитаны характеристики экстремумов аппроксимированных временных рядов для разных типов пахотных земель: гречихи, многолетних трав, сои, залежи и пара. Было показано, что для каждой сельхозкультуры аппроксимированные кривые сезонного хода имели характерный вид. Как было достоверно установлено (p<0,05), наиболее высокую точность аппроксимации рядов NDVI и EVI показал ряд Фурье (средняя ошибка составила, соответственно, 8,5% и 16,0%). Аппроксимация рядов NDVI с использованием двойной синусоиды, двойной гауссианы и двойной логистической функции приводила к увеличению ошибки до 8,9-10,6%. Аппроксимация рядов EVI на основе двойной гауссианы и двойной синусоиды способствовала росту средней ошибки до 18,3-18,5%. Проведенный апостериорный анализ с использованием критерия Тьюки показал, что для полей с соей, парующих и залежных земель для приближения индексов вегетации достоверно лучше использовать ряд Фурье, двойную гауссиану или двойную синусоиду, для полей с гречихой целесообразно применять ряд Фурье или двойную гауссиану. В целом, средняя ошибка аппроксимации сезонных временных рядов NDVI в 1,5-4 раза меньше, чем ошибка аппроксимации рядов EVI.

Бесплатно

Балансовая модель эпидемии COVID-19 на основе процентного прироста

Балансовая модель эпидемии COVID-19 на основе процентного прироста

Виктор Васильевич Захаров, Юлия Ефимовна Балыкина

Статья

В статье изучается возможность использования альтернативного подхода к прогнозированию статистических показателей эпидемии вируса нового типа. Представлен систематический обзор моделей прогнозирования эпидемий новых инфекций в зарубежной и российской научной литературе. Анализируется точность модели SIR при прогнозировании весенней волны эпидемии COVID-19 в России. В качестве альтернативного подхода к моделированию эпидемии предлагается использование вместо традиционной модели SIR новой дискретной стохастической модели распространения эпидемии CIR, основанной на балансе показателей эпидемии в текущий и прошлые моменты времени. Новая модель описывает динамику общего количества заболевших (С), общего количества выздоровевших и умерших (R) и числа активных случаев (I). Параметрами системы являются процентный прирост величины C(t) и характеристика динамического баланса эпидемиологического процесса, впервые введенная в этой статье. Сформулирован принцип динамического баланса эпидемиологического процесса, предполагающий наличие у любого процесса свойства близости значений общего количества заболевших в прошлые периоды и значений общего количества выздоровевших и умерших в текущий момент времени. Для вычисления значений характеристики динамического баланса используется задача целочисленного программирования. Продемонстрировано, что в общем случае динамическая характеристика эпидемиологического процесса не является постоянной величиной. Эпидемиологический процесс, динамическая характеристика которого не является постоянной величиной, называется нестационарным. Для построения среднесрочных прогнозов показателей эпидемиологического процесса на промежутках стационарности эпидемиологического процесса разработан специальный алгоритм. Исследован вопрос об использовании этого алгоритма на промежутках стационарности и нестационарности. Приведены примеры применения модели CIR для построения прогнозов рассматриваемых показателей эпидемии в России в мае-июне 2020 года.

Бесплатно

Безопасность протокола поиска и верификации в многомерном блокчейне

Безопасность протокола поиска и верификации в многомерном блокчейне

Илья Михайлович Шилов, Данил Анатольевич Заколдаев

Статья

Проблема безопасного обмена информацией и проведения транзакций между устойчивыми распределенными реестрами является одной из наиболее актуальных в сфере проектирования и построения децентрализованных технологий. До настоящего времени были предложены подходы, ориентированные на ускорение проверки цепочки блоков для верификации транзакций в соседних блокчейнах. При этом проблема поиска ранее не затрагивалась. В работе рассмотрен вопрос безопасности обмена данными между самостоятельными устойчивыми распределенными реестрами в рамках многомерного блокчейна. Описаны принципы и основные этапы работы протокола, а также базовые требования, предъявляемые к нему. Предложены способы построения протокола обмена сообщениями для верификации внешних транзакций: централизованный подход, принцип подмножества и стойкий SVP. Доказана эквивалентность централизованного подхода идеальному функционалу поиска и верификации в GUC-моделях. Показана вероятность успешной верификации в случае использования подхода, основанного на подмножествах, при применении полного графа сети или эквивалентного подхода с полным графом между родительским и дочерним блокчейнами. Доказана небезопасность случая со связью 1 к 1 между родительским и дочерним реестром, а также небезопасность подхода, основанного на подмножестве узлов родительского и дочернего реестров. Предложен стойкий протокол поиска и верификации блоков и транзакций, основанный на свойствах стойкости устойчивых распределенных реестров. В значительной степени вероятность атаки определяется вероятностью атаки на процесс верификации, а не на процесс поиска. При необходимости защиты от атакующих, контролирующих до половины узлов в сети, предложен метод комбинации подходов для поиска и верификации блоков и транзакций.

Бесплатно

Бесстрессовый алгоритм управления беговыми платформами на основе нейросетевых технологий

Бесстрессовый алгоритм управления беговыми платформами на основе нейросетевых технологий

ртем Дмитриевич Обухов, Денис Леонидович Дедов, Даниил Вячеславович Теселкин, Андрей Андреевич Волков, Александра Олеговна Назарова

Статья

В статье рассматривается задача прогнозирования скорости человека с использованием нейросетевых технологий и компьютерного зрения для минимизации запаздывания в системах управления беговыми платформами, приводящего к риску для здоровья пользователя. Для ее решения разработан бесстрессовый алгоритм, включающий прогнозирование положения и скорости пользователя на беговой платформе, включающий процедуру расчета скорости беговой платформы на основе анализа положения и характера движения пользователя, схему сбора и обработки данных для обучения нейросетевых методов, процедуру определения необходимого количества прогнозируемых кадров для устранения запаздывания. Научная новизна исследования состоит в разработке алгоритма управления беговыми платформами, объединяющего технологии компьютерного зрения для распознавания модели тела пользователя платформы, нейронные сети и методы машинного обучения для определения итоговой скорости человека на основе объединения данных о положении человека в кадре, текущей и прогнозируемой скорости человека. Предложенный алгоритм реализован с использованием библиотек Python, проведена его апробация в ходе экспериментальных исследований при анализе предшествующих 10 и 15 кадров для прогнозирования 10 и 15 следующих кадров. В результате сравнения алгоритмов машинного обучения (линейная регрессия, дерево решений, случайный лес, многослойные, сверточные и рекуррентные нейронные сети) при различных величинах длин анализируемых и прогнозируемых кадров наилучшую точность при прогнозировании положения показал алгоритм RandomForestRegressor, а при определении текущей скорости – плотные многослойные нейронные сети. Проведены экспериментальные исследования по применению разработанного алгоритма и моделей для определения скорости человека (при прогнозе в диапазоне 10-15 кадров получена точность более 90%), а также по их интеграции в систему управления беговой платформой. Испытания показали работоспособность предложенного подхода и корректность работы системы в реальных условиях. Разработанный алгоритм позволяет не использовать чувствительные к помехам датчики, требующие закрепления на теле человека, а прогнозировать действия пользователя за счет анализа всех точек тела человека для снижения запаздывания в различных человеко-машинных системах.

Бесплатно

Борис Геннадьевич Майоров

Борис Геннадьевич Майоров

Модели составных гармонических полуволн и связь дискретизации времени с энтропией временных параметров сигналов

Статья

Целью данного исследования является определение связи энтропии временных параметров сигналов в робастной системе управления с величиной дискретизации системного времени (в развитие работ trspy 1185, trspy 1274). В качестве примера объекта исследования рассмотрен процесс и его сигналы экстренного торможения высокоскоростного состава при наличии скольжения колёс по рельсам. Решена задача нахождения абсолютной погрешности ступенчатой и линейной интерполяции сигнала управления по равномерным выборкам из него с применением моделей составных гармонических полуволн. Предварительно, при обследовании объекта управления, определяются максимальные величины параметров сигнала и полуволн: скорость, ускорение и резкость. Параметры спектра отсутствуют по причине большой инерционности объектов управления, процессов и сигналов. Для определения величин интервалов равномерной дискретизации времени рассмотрены две группы моделей «гармонических полуволн». Первая группа моделей описывается гармоническими функциями времени, параметры которых согласованы. Вторая группа моделей описывается составными гармоническими функциями времени, тем самым согласуются временные параметры сигналов. Доказано, что при увеличении энтропии максимальных величин параметров сигналов увеличивается величина интервала дискретизации времени без увеличения погрешности интерполяции. Таким образом, величина энтропии параметров сигналов служит индикатором их рассогласованности. Приведены результаты моделирования и графики, полученные в среде математического пакета MathCAD. Результаты предназначены для оптимизации загрузки задачами ввода и первичной обработки информации процессоров в робастных системах автоматики реального времени, например, используемых для управления высокоскоростными поездами при штатном экстренном торможении и экстренном торможении в условиях скольжения или юза.

Бесплатно

Быстрый трекинг зрачка, основанный на исследовании гранично-ступенчатой модели изображения и многомерной оптимизации методом Хука-Дживса

Быстрый трекинг зрачка, основанный на исследовании гранично-ступенчатой модели изображения и многомерной оптимизации методом Хука-Дживса

Юрий Васильевич Грушко, Роман Иванович Паровик

Статья

Предлагается новый быстрый метод регистрации движения глаз в режиме реального времени на основе исследования гранично-ступенчатой модели полутонового изображения оператором Лапласиан – Гауссиана и нахождения нового предложенного дескриптора накопленных разностей (идентификатора точек), который отображает меру равноудаленности каждой точки от границ некоторой относительно монотонной области (например, зрачок глаза). Работа данного дескриптора исходит из предположения о том, что зрачок в кадре является наиболее округлой монотонной областью, имеющей высокий перепад яркости на границе, пиксели области должны иметь интенсивность меньше заранее заданного порога (но при этом зрачок может не являться самой темной областью на изображении). Учитывая все вышеперечисленные характеристики зрачка, дескриптор позволяет достичь высокой точности детектирования его центра и размера в отличии от методов, основанных на пороговой сегментации изображения, опирающихся на предположение о зрачке как наиболее темной области, морфологических методов (рекурсивная морфологическая эрозия), корреляционных или методов, исследующих только граничную модель изображения (преобразование Хафа и его вариации с двумерным и трехмерным пространствами параметров, алгоритм Starburst, Swirski, RANSAC, ElSe). Исследована возможность представления задачи трекинга зрачка как задачи многомерной оптимизации и ее решение неградиентным методом Хука –Дживса, где в качестве целевой функции выступает функция, выражающая дескриптор. При этом отпадает необходимость в вычислении дескриптора каждой точки изображения (составления специальной аккумуляторной функции), что значительно ускоряет работу метода. Проведен анализ предложенных дескриптора и метода, а также разработан программный комплекс на языке Python 3 (визуализация) и C++ (ядро трекинга) в лаборатории физико-математического факультета Камчатского государственного университета им. Витуса Беринга, позволяющий иллюстрировать работу метода и осуществлять трекинг зрачка в режиме реального времени.

Бесплатно

Верификация разливов нефти на водных поверхностях по аэрофотоснимкам на основе методов глубокого обучения

Верификация разливов нефти на водных поверхностях по аэрофотоснимкам на основе методов глубокого обучения

Маргарита Николаевна Фаворская, Нишчхал Нишчхал

Статья

В статье решается задача верификации разливов нефти на водных поверхностях рек, морей и океанов по оптическим аэрофотоснимкам с использованием методов глубокого обучения. Особенностью данной задачи является наличие визуально похожих на разливы нефти областей на водных поверхностях, вызванных цветением водорослей, веществ, не приносящих экологический ущерб (например, пальмовое масло), бликов при съемке или природных явлений (так называемые «двойники»). Многие исследования в данной области основаны на анализе изображений, полученных от радаров с синтезированной апертурой (Synthetic Aperture Radar (SAR) images), которые не обеспечивают точной классификации и сегментации. Последующая верификация способствует сокращению экологического и материального ущерба, а мониторинг размеров площади нефтяного пятна используется для принятия дальнейших решений по устранению последствий. Предлагается новый подход к верификации оптических снимков как задачи бинарной классификации на основе сиамской сети, когда фрагмент исходного изображения многократно сравнивается с репрезентативными примерами из класса нефтяных пятен на водных поверхностях. Основой сиамской сети служит облегченная сеть VGG16. При превышении порогового значения выходной функции принимается решение о наличии разлива нефти. Для обучения сети был собран и размечен собственный набор данных из открытых интернет-ресурсов. Существенной проблемой является несбалансированность выборки данных по классам, что потребовало применения методов аугментации, основанных не только на геометрических и цветовых манипуляциях, но и на основе генеративной состязательной сети (Generative Adversarial Network, GAN). Эксперименты показали, что точность классификации разливов нефти и «двойников» на тестовой выборке достигает значений 0,91 и 0,834 соответственно. Далее решается дополнительная задача семантической сегментации нефтяного пятна с применением сверточных нейронных сетей (СНС) типа кодировщик-декодировщик. Для сегментации исследовались три архитектуры глубоких сетей, а именно U-Net, SegNet и Poly-YOLOv3. Лучшие результаты показала сеть Poly-YOLOv3, достигнув точности 0,97 при среднем времени обработки снимка 385 с веб-сервисом Google Colab. Также была спроектирована база данных для хранения исходных и верифицированных изображений с проблемными областями.

Бесплатно

Вероятностный анализ безопасности беспроводной системы связи для канала типа Beaulieu-Xie с затенениями

Вероятностный анализ безопасности беспроводной системы связи для канала типа Beaulieu-Xie с затенениями

Алексей Сергеевич Гвоздарев, Татьяна Константиновна Артёмова, Павел Евгеньевич Патралов, Дмитрий Михайлович Мурин

Статья

В работе рассмотрена задача анализа безопасного сеанса на физическом уровне беспроводной системы связи в условиях многолучевого канала распространения сигнала и наличия канала утечки информации. Для обобщения эффектов распространения была выбрана модель канала Beaulieu-Xie с затенениями. Для описания безопасности процесса передачи информации использовалась такая метрика, как вероятность прерывания безопасного сеанса связи. В рамках исследования было получено аналитическое выражение вероятности прерывания связи. Проведён анализ её поведения в зависимости от характеристик канала и системы связи: среднего значения отношения сигнал-шум в основном канале и канале утечки, эффективного значение показателя потерь на пути распространения сигнала, относительного расстояния между законным приемником и прослушивающим приёмником и пороговой пропускной способности, нормированной на пропускную способность гладкого гауссова канала. Рассмотрены совокупности параметров, которые покрывают важные сценарии функционирования беспроводных систем связи. К ним относятся как глубокие замирания (отвечающие гиперрэлеевскому сценарию), так и малые замирания. Учитываются условия наличия существенной по величине компоненты прямой видимости и значительного количества многопутевых кластеров, затенения доминантной компоненты и многопутевость волн, а также всевозможные промежуточные варианты. Обнаружено, что величина энергетического потенциала, необходимого для гарантированной безопасной связи с заданной скоростью, определяется в первую очередь мощностью многопутевых компонент, а также наличие неснижаемой вероятности прерывания безопасного сеанса связи с ростом для каналов с сильным общим затенением компонент сигнала, что с практической точки зрения важно учитывать при предъявлении требований к величинам отношения сигнал/шум и скорости передачи данных в прямом канале, обеспечивающим желаемую степень безопасности беспроводного сеанса связи.

Бесплатно

Вероятностный анализ обобщённой статистической модели многолучевого канала SIMO системы с замираниями и коррелированными затенениями

Вероятностный анализ обобщённой статистической модели многолучевого канала SIMO системы с замираниями и коррелированными затенениями

Алексей Сергеевич Гвоздарев, Павел Евгеньевич Патралов

Статья

Рассмотрена задача анализа характеристик процесса передачи информации многоэлементными системами связи в условиях многолучевого канала распространения сигнала. Для обобщения эффектов распространения была выбрана модель канала κ–μ с коррелированными затенениями, а в качестве используемой технологии организации многоэлементной системы – SIMO система, использующая дифференциально-взвешенное комбинирование сигнала на приёмной стороне. Для описания характеристик процесса передачи информации использовался подход на основе статистик высшего порядка эргодической пропускной способности. В рамках исследования были получены аналитические выражения для статистик произвольного порядка для рассматриваемой модели канала. Проведён анализ поведения первых четырёх статистик (эргодической пропускной способности, величины надёжности, коэффициентов асимметрии и эксцесса) в зависимости от характеристик канала (количества многопутевых кластеров распространения, доли мощности, приходящейся на доминантные компоненты, степени затенения доминантных компонент и коэффициента корреляции затенений). В рамках исследования были рассмотрены 4 ситуации поведения исследуемой модели канала, существенно различающиеся по своим свойствам. Отмечено, что в отличие от пропускной способности, статистики высшего порядка оказываются существенно более чувствительными к параметрам канала и, как следствие, являются более значимыми индикаторами флуктуации скорости передачи информации в канале связи. Обнаружено наличие ярко выраженного экстремума (минимума) зависимости надёжности эргодической пропускной способности от среднего соотношения сигнал/шум, что с практической точки зрения важно учитывать при предъявлении требований к величине отношения сигнал/шум в канале, обеспечивающей желаемое качество функционирования системы связи.

Бесплатно

Взаимное влияние интеллектуального капитала и информационных технологий управления

Взаимное влияние интеллектуального капитала и информационных технологий управления

Борис Владимирович Соколов, Дмитрий Николаевич Верзилин, Татьяна Геннадьевна Максимова, Минь Чжан

Статья

На сегодняшний день существует общее представление об интеллектуальном капитале, разработаны различные подходы к его измерению на микро- и макроуровне. Разработаны методы патентной аналитики для анализа технологических трендов. На концептуальном уровне известно, что существует взаимовлияние интеллектуального капитала и технологических трендов, но отсутствуют методические разработки для количественного оценивания такого влияния с использованием данных из различных источников. Цель исследования заключается в количественном оценивании взаимного влияния национального интеллектуального капитала и современных информационных технологий управления на макроуровне. Рассмотрены математические основания разделения компонентов интеллектуального капитала и технологий. Подтверждена гипотеза о статистической значимости взаимовлияния интеллектуального капитала и информационных технологий управления. Определена регрессионная зависимость, которая достаточно хорошо аппроксимируется линейной регрессией индекса интеллектуального капитала от логарифма индекса патентной активности страны в области IT-методов управления, что может быть интерпретировано как замедление роста индекса интеллектуального капитала при достижении определенного уровня патентной активности. Установлено, что чем более развита экономика, тем выше в ней уровень интеллектуального капитала и выше уровень распространения IT-методов управления. Явными исключениями из этой закономерности являются Китай и Индия. Китай, который относится к странам с доходом выше среднего уровня, демонстрируют более высокие, чем страны его уровня экономического развития, взаимосвязанные значения индекса интеллектуального капитала и распространенности IT-методов управления. Индия, занимающая 3-е место среди стран с уровнем дохода ниже среднего, имеет соизмеримые показатели развития интеллектуального капитала и распространения IT-методов управления со странами с уровнем дохода выше среднего. Дальнейшие исследования могут быть связаны с проверкой гипотез о возможности выявления предложенным методом количественных зависимостей между интеллектуальным капиталом и технологическим развитием. Необходима детализация выявленных зависимостей по кодам Международной патентной классификации и составляющим интеллектуального капитала, выявление зависимостей для других технологических областей.

Бесплатно

Вопросы создания машинопонимаемых SMART-стандартов на основе графов знаний

Вопросы создания машинопонимаемых SMART-стандартов на основе графов знаний

Елена Арефьевна Шалфеева, Валерия Викторовна Грибова

Статья

Развитие цифровой трансформации требует широкого использования новых технологий в документах по стандартизации. Одной из задач является создание стандартов с машинопонимаемым содержанием, которые позволят использовать цифровые документы на различных этапах разработки и производства без необходимости участия человека-оператора. Целью данной работы является описание подхода для создания и перевода в машинопонимаемое представление нормативных документов отрасли для дальнейшего их использования в программных сервисах и системах. Содержимое SMART-стандарта бывает трех видов: машиночитаемое, машиноинтерпретируемое и машинопонимаемое. Для формализации данных и знаний при решении различных задач активно используются графы знаний. Предложен новый двухуровневый подход для создания и перевода в машинопонимаемое представление нормативных документов как графов знаний. Подход определяет два вида интерпретации такого документа (человекочитаемость и машинопонимаемость) через два связанных формата: граф, каждый семантический узел которого представляет текст на естественном языке, и сеть понятий и строгих связей. Каждому узлу «человекочитаемого» графа соответствует (в общем случае) поддерево машинопонимаемого графа знаний. В качестве основы для обеспечения преобразования одной формы представления SMART-стандарта в другую форму служат LLM модели, дополняемые специализированным адаптером, полученным в результате дообучения с помощью подхода Parameter-Efficient Fine-Tuning. Установлены требования к набору проблемно- и предметно-ориентированных инструментальных средств формирования графов знаний. Показана концептуальная архитектура системы поддержки решения комплекса задач на основе SMART-документов в виде графов, установлены принципы реализации программных компонентов, работающих со знаниями, для интеллектуальных программных сервисов.

Бесплатно

Восстановление аэрофотоснимков сверхвысокого разрешения с учетом семантических особенностей

Восстановление аэрофотоснимков сверхвысокого разрешения с учетом семантических особенностей

Маргарита Николаевна Фаворская, Андрей Иванович Пахирка

Статья

В настоящее время происходит активное развитие технологий обработки изображений дистанционного зондирования, включающих как спутниковые снимки, так и аэрофотоснимки, полученные от видеокамер беспилотных летательных аппаратов. Зачастую такие снимки имеют артефакты, связанные с низким разрешением, размытостью фрагментов изображения, наличием шумов и т.д. Одним из способов преодоления таких ограничений является применение современных технологий для восстановления снимков сверхвысокого разрешения на основе методов глубокого обучения. Особенностью аэрофотоснимков является представление текстуры и структурных элементов более высокого разрешения, чем на спутниковых снимках, что объективно способствует лучшим результатам восстановления. В статье приводится классификация методов сверхвысокого разрешения с учетом основных архитектур глубоких нейронных сетей, а именно сверточных нейронных сетей, визуальных трансформеров и генеративно-состязательных сетей. В статье предлагается метод восстановления аэрофотоснимков сверхвысокого разрешения с учетом семантических особенностей SemESRGAN за счет использования на этапе обучения дополнительной глубокой сети для семантической сегментации. При этом минимизируется общая функция потерь, включающая состязательные потери, потери на уровне пикселов и потери воспирятия (сходства признаков). Для экспериментов использовались шесть наборов аннотированных аэрофотоснимков и спутниковых снимков CLCD, DOTA, LEVIR-CD, UAVid, AAD и AID. Было выполнено сравнение результатов восстановления изображений предложенным методом SemESRGAN с базовыми архитектурами сверточных нейронных сетей, визуальных трансформеров и генеративно-состязательных сетей. Получены сравнительные результаты восстановления изображений с применением объективных метрик PSNR и SSIM, что позволило оценить качество восстановления с использованием различных моделей глубоких сетей.

Бесплатно

Восстановление дискретной временной последовательности сигнала на основе локальной аппроксимации с использованием ряда Фурье по ортогональной системе тригонометрических функций

Восстановление дискретной временной последовательности сигнала на основе локальной аппроксимации с использованием ряда Фурье по ортогональной системе тригонометрических функций

Владимир Николаевич Якимов

Статья

В статье рассмотрена разработка математического и алгоритмического обеспечения для восстановления отсчетов на проблемных участках дискретной последовательности непрерывного сигнала. Цель работы состояла в том, чтобы обеспечить восстановление утраченных отсчетов или участков отсчетов с непостоянной искаженной временной сеткой при осуществлении дискретизации сигнала с равномерным шагом и одновременно обеспечить снижение вычислительной сложности цифровых алгоритмов восстановления. Решение поставленной задачи осуществлено на основе метода локальной аппроксимации. Спецификой применения этого метода стало использование двух подпоследовательностей отсчетов, расположенных симметрично по отношению к восстанавливаемому участку последовательности. В качестве аппроксимирующей модели используется ряд Фурье по ортогональной системе тригонометрических функций. Оптимальное решение задачи аппроксимации основано на критерии минимума квадратичной погрешности. Для данного вида погрешности получены математические соотношения. Они позволяют оценить ее значение в зависимости от порядка модели и числа отсчетов подпоследовательностей, по которым осуществляется процедура восстановления. Особенность полученных в настоящей работе математических соотношений для восстановления сигнала заключается в том, что они не требуют предварительного вычисления коэффициентов ряда Фурье. Они обеспечивают непосредственно вычисление значений восстанавливаемых отсчетов. При этом в случае выбора четного числа отсчетов в подпоследовательностях, используемых для восстановления, не требуется выполнять операции умножения. Всё это обеспечило снижение вычислительной сложности разработанного алгоритма для восстановления сигнала. Экспериментальные исследования алгоритма осуществлялись на основе имитационного моделирования с использованием модели сигнала, представляющей собой аддитивную сумму гармонических компонент со случайной начальной фазой. Численные эксперименты показали, что разработанный алгоритм обеспечивает результат восстановления отсчетов сигнала с достаточно низкой погрешностью. Алгоритм реализован в виде программного модуля. Работа модуля осуществляется на основе асинхронного управления процессом восстановления отсчетов. Он может быть применен в составе метрологически значимого программного обеспечения систем цифровой обработки сигналов.

Бесплатно

Журнал