Обработка изображений, распознавание образов. Рубрика в журнале - Компьютерная оптика

Публикации в рубрике (330): Обработка изображений, распознавание образов
все рубрики
Линейные операторы с векторными масками в задачах цифровой обработки изображений

Линейные операторы с векторными масками в задачах цифровой обработки изображений

Новиков А.И., Пронькин А.В.

Статья научная

В работе обосновывается целесообразность применения векторных масок для решения определенного круга задач цифровой обработки изображений. Основное преимущество векторных масок по сравнению с матричными масками заключается в сокращении вычислительной сложности алгоритмов при сохранении, а в некоторых задачах и в улучшении качественных показателей. В статье демонстрируются примеры применения векторных масок в задаче оценивания уровня дискретного белого шума в составе изображения и конструирования на этой основе корректно работающего сигма-фильтра, в задаче детектирования границ для получения сглаженных оценок частных производных, в задаче обнаружения прямых в составе контурного изображения. В работе используются результаты, полученные авторами в их более ранних публикациях.

Бесплатно

Малопараметрический метод оконтуривания сельскохозяйственных полей на спутниковых снимках с помощью исторических данных MSAVI2

Малопараметрический метод оконтуривания сельскохозяйственных полей на спутниковых снимках с помощью исторических данных MSAVI2

Павлова Мария Александровна, Тимофеев Валерий Андреевич, Бочаров Дмитрий Александрович, Сидорчук Дмитрий Сергеевич, Нурмухаметов Альмир Линарович, Никоноров Артем Владимирович, Ярыкина Мария Сергеевна, Кунина Ирина Андреевна, Смагина Анна Александровна, Загарев Михаил Александрович

Статья научная

В данной работе рассматривается проблема оконтуривания сельскохозяйственных полей на спутниковых снимках. Для решения этой задачи применяется подход, основанный на анализе исторических данных. В работе показано, что на таких данных можно добиться высокого качества с помощью простого малопараметрического метода. Метод состоит из детектора полей и детектора границ. Детекция полей основана на определении порога Оцу, а для определения границ используется детектор краев Кэнни. В связи с нехваткой доступных наборов данных нами был подготовлен и опубликован собственный набор данных, состоящий из 18859 экспертно аннотированных полей на снимках Sentinel-2. Для сравнения оконтуривания на мгновенных и исторических данных был реализован один из наиболее современных методов, основанный на глубоком обучении. Эксперимент показал, что использование исторических данных позволяет получить более высокое качество с более низкими затратами. Предлагаемый малопараметрический метод требует значительно меньше обучающих данных по сравнению с методом на мгновенных данных. Подготовленный набор данных и реализация алгоритма на языке Python были выложены в открытый доступ.

Бесплатно

Маркировка элементов частично маскированных групповых объектов по локальным описаниям ассоциированного сплошного образа

Маркировка элементов частично маскированных групповых объектов по локальным описаниям ассоциированного сплошного образа

Кревецкий Александр Владимирович, Чесноков Сергей Евгеньевич

Статья научная

Исследуются вопросы распознавания изображений множеств объектов, чьи размеры соизмеримы с элементом разрешения регистрирующей аппаратуры - групп точечных объектов. Образы в виде группы точечных объектов встречаются в локационных изображениях, к ним могут быть сведены изображения крупноразмерных объектов, представленных характерными точками, кластеры данных в признаковом пространстве, события в системах массового обслуживания и автоматизированных системах управления. Осложняет распознавание групп точечных объектов несвязность их элементов, узость автокорреляционной функции их изображений по параметрам геометрических преобразований, пространственные флуктуации элементов, ложные отметки и пропуски сигнальных. Наиболее перспективные подходы к распознаванию изображений данного типа основаны на преобразовании групп точечных объектов в связный объект - ассоциированный сплошной образ - и анализе его вторичных признаков. Однако для групп точечных объектов с нестационарной конфигурацией и/или частично маскированных вопросы распознавания еще слабо исследованы...

Бесплатно

Математика и практика инвариантов цветовых пространств на примере определения баланса по серому для цифровой печатной системы

Математика и практика инвариантов цветовых пространств на примере определения баланса по серому для цифровой печатной системы

Тарасов Дмитрий Александрович, Мильдер Олег Борисович

Статья научная

В современной полиграфии большое число задач связано со взаимной трансформацией цветовых пространств. В частности, наиболее часто встречается пара аппаратно-зависимых цветовых пространств RGB и CMYK, взаимное преобразование цвета в которых неоднозначно, что создает существенные проблемы при цветовоспроизведении. Для решения этой проблемы мы предлагаем использовать инварианты цветовых пространств - градационные траектории и градационные поверхности, которые представляют собой аналоги градационных кривых для исходных колорантов и их бинарных наложений, построенные в абсолютном цветовом пространстве CIE Lab. Инварианты вводятся на основе математического аппарата дифференциальной геометрии пространственных кривых и поверхностей. Практическое применение инвариантов цветовых пространств сопряжено с определенными трудностями, связанными с их сложным аналитическим описанием, кроме того, для большинства практических задач высокая точность модели является избыточной. Для практического применения инвариантов мы предлагаем более простой подход, использующий естественную дискретизацию цвета в цифровых печатных системах. В качестве примера приводится процедура определения баланса по серому для электрофотографической печатной машины.

Бесплатно

Математические модели получения стереоизображений с двухзеркальных катадиоптрических систем с учетом дисторсии объективов

Математические модели получения стереоизображений с двухзеркальных катадиоптрических систем с учетом дисторсии объективов

Степанов Дмитрий Николаевич

Статья научная

Статья посвящена разработке и исследованию математических моделей, описывающих получение изображений с двухзеркальных катадиоптрических систем, которые позволяют создавать стереоизображения с использованием одной камеры и двух плоских зеркал. Главное отличие предложенных моделей от существующих решений в данной области - учёт дисторсии на изображениях с реальных камер. Приведён обзор основных методов создания 3D-моделей с применением оптических технологий, а также обзор типов катадиоптрических систем в зависимости от количества используемых зеркал и их формы (криволинейные или плоские). Методика проведения исследования заключается в математическом моделировании двухзеркальной катадиоптрической системы, а также в компьютерном эксперименте с использованием реальных изображений, которые были получены с помощью стереонасадки из двух плоских зеркал, и синтетических изображений, сгенерированных на основе алгоритма трассировки лучей. Приведены результаты экспериментов по калибровке камеры со стереонасадкой, а также результаты ректификации изображений с использованием калибровочных данных и разработанных математических моделей. Результаты экспериментов позволяют судить об адекватности разработанных моделей. Предложенные модели расширяют теорию компьютерного зрения и могут быть использованы в создании и исследовании систем компьютерного зрения для робототехнических комплексов.

Бесплатно

Метод автоматического совмещения разнородных цифровых изображений дистанционного зондирования Земли

Метод автоматического совмещения разнородных цифровых изображений дистанционного зондирования Земли

Борисов А.Н., Мясников В.В., Сергеев В.В.

Статья научная

В работе предлагается метод автоматического совмещения разнородных цифровых изображений дистанционного зондирования Земли с использованием данных о съемке. Метод предназначен для совмещения цветных, полутоновых, мультиспектральных и радарных изображений и их комбинаций с возможным отличием в пространственном разрешении до четырех (опционально – шестнадцати) раз. Основными этапами предлагаемого метода являются: опциональный этап повышения разрешения (до четырех раз); опциональный этап снижения числа каналов цифровых снимков до предустановленных трех или одного; этап поиска особых точек и этап их описания и совмещения. Для получения универсального и устойчивого решения на последних этапах в работе сопоставлялись лучшие известные алгоритмы: SIFT, SAR-SIFT, RIFT и обучаемый RoMa. Экспериментальные исследования с использованием указанных типов космических изображений показали однозначное преимущество обучаемой нейросетевой модели RoMa, которая и была настроена/обучена на множестве разнородных снимков. Для дополнительного повышения точности совмещения мы использовали априорные данные о снимках в виде данных их геопривязки.

Бесплатно

Метод анализа динамических изображений нефросцинтиграфии

Метод анализа динамических изображений нефросцинтиграфии

Гайдель Андрей Викторович, Капишников Александр Викторович, Пышкина Юлия Сергеевна, Колсанов Александр Владимирович, Храмов Александр Григорьевич

Статья научная

Предложен метод автоматической обработки динамических нефросцинтиграмм, основанный на приближении кривой ренограммы экспоненциальной функцией. Метод позволяет получить объективные параметры состояния почек. Работа метода изучена на наборе радионуклидных изображений ренотрансплантата. Представлены результаты клинических исследований, подтверждающие диагностическую эффективность разработанного подхода. Анализ кинетики нефротропного индикатора обеспечивает точную оценку функционального состояния пересаженной почки. Выявлено два числовых параметра, показывающих более высокую диагностическую эффективность при их вычислении по построенной модели, чем при их вычислении по исходной ренограмме.

Бесплатно

Метод баггинга и отбор признаков в построении нечётких классификаторов для распознавания рукописной подписи

Метод баггинга и отбор признаков в построении нечётких классификаторов для распознавания рукописной подписи

Сарин Константин Сергеевич, Ходашинский Илья Александрович

Статья научная

Распознавание рукописной подписи является важной проблемой в области исследований аутентификации личности и биометрической идентификации. Известны два метода распознавания рукописной подписи: если возможно оцифровать скорость движения пера, то говорят о динамическом распознавании; в противном случае, когда доступно только изображение подписи, говорят о статическом распознавании. Доказано, что при использовании динамического распознавания достигается большая точность, чем при использовании статического распознавания. В настоящей работе в качестве характеристик подписи используются амплитуды, частоты и фазы гармоник, извлечённых из сигналов подписи координат X и Y движения пера с помощью дискретного преобразования Фурье. Предварительно все сигналы подвергаются предобработке, включающей в себя устранение разрывов, устранение угла наклона, нормализацию позиции и масштабирование. В качества инструмента распознавания подписи по полученным признакам предлагается использовать нечёткий классификатор...

Бесплатно

Метод визуального анализа лица водителя для автоматического чтения речи по губам при управлении транспортным средством

Метод визуального анализа лица водителя для автоматического чтения речи по губам при управлении транспортным средством

Акснов Александр Александрович, Рюмин Дмитрий Александрович, Кашевник Алексей Михайлович, Иванько Денис Викторович, Карпов Алексей Анатольевич

Статья научная

В работе предложен метод визуального анализа и чтения речи по губам водителя при управлении транспортным средством. Автоматическое распознавание речи в акустически неблагоприятных динамических условиях является одной из актуальных задач искусственного интеллекта. Проблема эффективного автоматического чтения по губам во время дорожного движения на данный момент не решена из-за наличия различного рода помех (частые повороты головы, вибрация, динамическое освещение и т.п.). Кроме того, проблема усложняется отсутствием представительных баз данных визуальной речи. Для поиска и извлечения области интереса используется программная библиотека MediaPipe Face Mesh. Для анализа визуальной речи разработана интегральная нейросетевая архитектура (End-to-End). Визуальные признаки извлекаются из отдельного изображения с помощью свёрточной нейронной сети в связке с полносвязным слоем. Извлеченные нейросетевые признаки изображений являются входными данными для нейросети с длинной кратковременной памятью. В связи с небольшим объемом обучающих данных было предложено применять метод переноса обучения. Результаты по анализу и распознаванию визуальной речи водителя в процессе управления автомобилем представляют большие возможности для решения актуальной задачи автоматического чтения по губам. Экспериментальные исследования выполнены на собственном аудиовизуальном корпусе русской речи RUSAVIC, собранном в реальных условиях дорожного движения. Максимальная точность визуального распознавания 62 голосовых управляющих команд водителей составила 64,09 %. Полученные результаты могут быть использованы в системах аудиовизуального распознавания речи, применяемых в акустически сложной обстановке дорожного движения (высокая скорость движения, открытые окна или люк в автомобиле, одновременное проигрывание музыки, слабая шумоизоляция и т.п.).

Бесплатно

Метод визуального внимания на основе ранжирования вершин графа по разнородным признакам изображений

Метод визуального внимания на основе ранжирования вершин графа по разнородным признакам изображений

Захаров Алексей Александрович, Титов Дмитрий Витальевич, Жизняков Аркадий Львович, Титов Виталий Семнович

Статья научная

В статье рассматривается разработка метода визуального внимания на основе ранжирования вершин графа по разнородным признакам изображений. Целью исследований является создание метода, позволяющего с высокой точностью обнаруживать объекты на изображениях с низким цветовым контрастом выделяемых и фоновых областей. Для вычисления области значимости изображение предварительно сегментируется на регионы. На основе регионов строится граф. Каждый регион связан со смежными регионами, а также с областями, примыкающими к смежным регионам. Регионы являются вершинами графа. Вершины графа ранжируются по признакам соответствующих областей изображения. Область значимости выделяется на основе запросов фоновых областей. К фоновым областям относятся регионы, примыкающие к краям изображения. В существующем подходе визуального внимания на основе ранжирования вершин графа использовались только цветовые признаки изображения. В предлагаемом методе для повышения точности дополнительно используются текстурные признаки и признаки формы. Для вычисления текстурных признаков используется функция энергии Габора. При анализе формы рассчитывается расстояние между центрами регионов. Результаты экспериментов представлены на тестовых изображениях. Построены кривые точности-полноты, показывающие преимущество разработанного метода.

Бесплатно

Метод выделения области макулярного отёка с использованием данных оптической когерентной томографии

Метод выделения области макулярного отёка с использованием данных оптической когерентной томографии

Ильясова Наталья Юрьевна, Демин Никита Сергеевич, Широканев Александр Сергеевич, Куприянов Александр Викторович, Замыцкий Евгений Андреевич

Статья научная

В работе предложен метод выделения области диабетического макулярного отёка на изображениях глазного дна на основе анализа данных оптической когерентной томографии. Актуальность работы обусловлена необходимостью создания систем поддержки проведения операций лазерокоагуляции для повышения её эффективности. В основе предложенного подхода лежит набор методов и алгоритмов сегментации изображений, поиска особых точек и составления их дескрипторов. Алгоритм Кэнни применяется для поиска границы между стекловидным телом и сетчаткой на изображениях оптической когерентной томографии. Метод сегментации, основанный на алгоритме Краскала построения минимального остовного дерева взвешенного связного неориентированного графа, используется для выделения области сетчатки до пигментного слоя на изображении. С использованием полученных результатов сегментации была построена карта толщины сетчатки глаза и её отклонений от нормы. В ходе проведенных исследований были подобраны оптимальные значения параметров в алгоритмах Кэнни и графовой сегментации, позволяющие достичь ошибки сегментации в размере 5 %. Были рассмотрены методы SIFT, SURF и AKAZE для наложения рассчитанных карт толщины сетчатки глаза и её отклонений от нормы на изображение глазного дна. В случаях, когда вместе с данными оптической когерентной томографии предоставлен снимок с фундус-камеры аппарата оптической когерентной томографии, с помощью метода SURF возможно точное совмещение с изображением глазного дна.

Бесплатно

Метод генерации обучающих данных для компьютерной системы обнаружения защитных масок на лицах людей

Метод генерации обучающих данных для компьютерной системы обнаружения защитных масок на лицах людей

Рюмина Елена Витальевна, Рюмин Дмитрий Александрович, Маркитантов Максим Викторович, Карпов Алексей Анатольевич

Статья научная

Мониторинг и оценка уровня безопасности отдельных граждан и общества в целом является одной из важнейших проблем современного мира, который вынужден меняться в связи с возникновением коронавируса COVID-19. Для повышения уровня безопасности общества необходимы новые информационные технологии, способные остановить распространение пандемии за счет минимизации угроз новых вспышек и мониторинга соблюдения людьми защитных мер. К таким технологиям относятся, в частности, компьютерные системы для автоматизированного отслеживания наличия защитных масок на лицах людей. Для таких систем предлагается метод генерации обучающих данных, который объединяет такие способы аугментации данных, как Mixup и Insert. Предложенный метод апробируется на двух корпусах - MAsked FAce и Real-World Masked Face Recognition Dataset, для которых достигаются значения невзвешенной средней полноты при обнаружении масок в 98,51 % и 98,50 %. Кроме того, эффективность предложенного метода апробируется на изображениях с имитацией защитных масок на лицах людей и предлагается автоматизированный способ для уменьшения ошибок I и II рода. С помощью предложенного автоматизированного способа удается сократить количество ошибок II рода с 174 до 32 для корпуса Real-World Masked Face Recognition Dataset и с 40 до 14 для изображений с нарисованными защитными масками на реальных лицах людей.

Бесплатно

Метод защиты авторских прав на глубокие нейронные сети с помощью цифровых водяных знаков

Метод защиты авторских прав на глубокие нейронные сети с помощью цифровых водяных знаков

Выборнова Юлия Дмитриевна

Статья научная

В статье предлагается новый метод защиты авторских прав на глубокие нейронные сети. Основная идея метода заключается во встраивании цифровых водяных знаков в защищаемую модель путем ее дообучения на уникальном наборе псевдоголографических изображений (псевдоголограмм). Псевдоголограмма - это двумерный синусоидальный сигнал, кодирующий двоичную последовательность произвольной длины. Изменяя фазу каждой синусоиды, можно формировать различные изображения-псевдоголограммы на основе одной битовой последовательности. Предлагаемая схема встраивания заключается в генерации обучающей выборки таким образом, чтобы псевдоголограммы, сформированные на основе одной последовательности, попадали в один и тот же класс. При этом каждому классу будут соответствовать различные битовые последовательности. Верификация цифровых водяных знаков осуществляется путем подачи на вход модели различных псевдоголограмм и проверки соответствия скрытой в них последовательности определенному классу. Экспериментальные исследования подтверждают работоспособность метода, а также соответствие всем критериям качества, выдвигаемым к методам встраивания цифровых водяных знаков в нейронные сети.

Бесплатно

Метод защиты векторных карт с использованием изображения ЦВЗ как вторичного контейнера

Метод защиты векторных карт с использованием изображения ЦВЗ как вторичного контейнера

Выборнова Юлия Дмитриевна, Сергеев Владислав Викторович

Статья научная

В статье исследован метод встраивания цифрового водяного знака в векторные картографические данные на основе циклического сдвига списка вершин полигональных объектов. Предложена модификация метода, позволяющая автоматизировать процедуру аутентификации, а также повысить его стойкость к изменению содержимого карты. Основная идея улучшенного метода заключается в использовании «шумоподобного» изображения в качестве вторичного контейнера для цифрового водяного знака, представленного в форме битовой последовательности. Описан алгоритм формирования изображения-контейнера из последовательности цифровых водяных знаков, а также алгоритм извлечения такой последовательности. Проведено экспериментальное исследование информационной ёмкости изображения-контейнера и его стойкости к искажениям, моделирующим встраивание в картографические данные: квантованию и добавлению интерполяционного шума. Работоспособность метода также продемонстрирована на реальных картографических данных. Сформулированы рекомендации по рациональному выбору параметров встраивания цифрового водяного знака в зависимости от числа полигонов векторной карты.

Бесплатно

Метод идентификации личности по радужной оболочке глаза с использованием нейросетевого подхода на этапах сегментации и формирования признакового представления

Метод идентификации личности по радужной оболочке глаза с использованием нейросетевого подхода на этапах сегментации и формирования признакового представления

Ганеева Юлия Ханифовна, Мясников Евгений Валерьевич

Статья научная

Задача идентификации личности играет важную роль в обеспечении безопасности: информационной, общественной и др. В последнее время наиболее актуальными и перспективными являются биометрические методы идентификации личности. В статье представлено исследование метода идентификации личности по радужной оболочке глаза с использованием нейросетевого подхода на этапах сегментации и формирования признакового представления изображений. Представлено описание набора данных, используемого для реализации этапа сегментации с использованием сверточных нейронных сетей, а также предоставлен доступ к маскам сегментации всего набора данных. Предложен метод формирования признакового представления данных с использованием предварительно обученных сверточных нейронных сетей для решения задачи классификации радужной оболочки глаза. Проведен сравнительный анализ методов формирования признакового представления радужной оболочки глаза, включая классические подходы и нейросетевой подход. Проведен сравнительный анализ методов классификации, включая классические алгоритмы машинного обучения, а именно: метод опорных векторов, случайный лес, метод k-ближайших соседей. Результаты экспериментальных исследований показали высокое качество классификации при применении предложенного подхода.

Бесплатно

Метод измерения шумов цифровых камер автоматической сегментацией полосовой сцены

Метод измерения шумов цифровых камер автоматической сегментацией полосовой сцены

Евтихиев Николай Николаевич, Козлов Александр Валерьевич, Краснов Виталий Вячеславович, Родин Владислав Геннадьевич, Стариков Ростислав Сергеевич, Чермхин Павел Аркадьевич

Статья научная

Широкое использование фото- и видеокамер для научных и производственных применений, а также в бытовых условиях привело к необходимости оперативного определения их характеристик для оценки применимости в конкретной задаче. В большинстве случаев информация о шумах фотосенсора представлена неполно или отсутствует даже в паспортах специализированных научных цифровых камер, что делает задачу нахождения шумов актуальной. В работе предложен метод измерения основных шумовых характеристик фотосенсоров цифровых камер: световых и темновых временных шумов, неоднородностей фоточувствительности пикселей и темнового сигнала. Метод включает съемку только 2 кадров одной сцены, состоящей из нескольких полос (квазиоднородных областей) различной яркости, по которым далее рассчитываются шумы исследуемой камеры после программной сегментации по уровням сигналов. Экспериментальная апробация проводилась при использовании цифровых камер различного назначения и с различным устройством сенсора. Предложенный метод позволяет определить все основные шумовые характеристики фотосенсоров и не уступает по скорости и точности другим оперативным методам оценки шумов (которые, как правило, не дают полной информации о шумах). Значения характеристик шума, полученные с его помощью, соответствуют в пределах погрешности измеренным с помощью времязатратного стандартного метода.

Бесплатно

Метод максимально правдоподобных рассогласований в задаче распознавания изображений на основе глубоких нейронных сетей

Метод максимально правдоподобных рассогласований в задаче распознавания изображений на основе глубоких нейронных сетей

Савченко Андрей Валентинович

Статья научная

Исследована задача распознавания изображений в условиях малых выборок наблюдений на основе метода ближайшего соседа, в котором сопоставляются векторы признаков высокой размерности, выделенные с помощью глубокой свёрточной нейронной сети. Предложен новый алгоритм распознавания на основе метода максимального правдоподобия (совместной плотности вероятности) рассогласований между входным и всеми эталонными изображениями. Для оценки правдоподобия используется известное асимптотически нормальное распределение рассогласования Йенсена-Шеннона между векторами значений признаков изображений, что согласовывается с известными экспериментальными оценками закона распределения мер близости между векторами высокой размерности. В рамках экспериментального исследования для базы данных фотографий лиц Labeled Faces in the Wild и набора видеоданных YouTube Faces показано, что предлагаемый алгоритм позволяет на 1-5 % повысить точность распознавания изображений и видеопоследовательностей по сравнению с традиционными методами классификации.

Бесплатно

Метод нахождения соответствий на изображениях с использованием структур дескрипторов

Метод нахождения соответствий на изображениях с использованием структур дескрипторов

Захаров Алексей Александрович, Жизняков Аркадий Львович, Титов Виталий Семнович

Статья научная

В работе рассматривается метод нахождения соответствий на изображениях с использованием структур дескрипторов. Дескрипторами в разработанном методе могут быть любые известные решения в области компьютерного зрения. Однако при нахождении соответствий на парах изображений могут появляться неточности. Для устранения «выбросов» предлагается сравнивать структуры дескрипторов. Структуры дескрипторов описываются при помощи графов. Для нахождения соответствий на основе структур дескрипторов используется метод Умеямы. Метод основан на разложении матриц на собственные значения и собственные векторы для задач сопоставления взвешенных графов. Таким образом, на начальном этапе находятся соответствия на основе дескриптора, а затем на основе полученных наборов сопоставленных особенностей строятся два графа для каждого изображения. Весами графа являются расстояния между всеми особенностями изображений, вычисленные с использованием функции Гаусса. Строятся весовые матрицы для каждого графа...

Бесплатно

Метод обнаружения контуров на основе весовой модели изображения

Метод обнаружения контуров на основе весовой модели изображения

Гизатуллин Зиннур Марселевич, Ляшева Стелла Альбертовна, Морозов Олег Геннадьевич, Шлеймович Михаил Петрович

Статья научная

В работе рассматривается новый метод обнаружения контуров на полутоновых изображениях. Предлагаемый метод базируется на применении весовой модели изображения, которая позволяет оценить его пиксели с точки зрения их значимости для восприятия. При этом наиболее значимыми являются пиксели, в которых проявляются характерные особенности изображения, в том числе перепады яркости на границах областей. Для оценки значимости пикселей предлагается процедура анализа вклада соответствующих им вейвлет-коэффициентов на различных масштабных уровнях в общую энергию изображения. Описанный метод обнаружения контуров предусматривает построение весовой модели, определение направлений линейных сегментов вдоль границ на весовом изображении, анализ значимости пикселей и связывание значимых пикселей. Достоинством метода является высокая скорость работы (соответствующий детектор контуров работает в среднем в четыре раза быстрее детектора Кэнни). Кроме этого, в работе описан детектор значимых областей на изображении, основанный также на весовой модели. Предложенный подход может быть использован в различных системах обработки информации и управления на основе методов и средств компьютерного зрения, в том числе системах управления и навигации беспилотных транспортных средств, дистанционного зондирования Земли, системах обнаружения дефектов дорожного покрытия, биометрических системах и др.

Бесплатно

Метод оптимального линейного сверхразрешающего восстановления изображений

Метод оптимального линейного сверхразрешающего восстановления изображений

Максимов Алексей Игоревич, Сергеев Владислав Викторович

Статья научная

В статье предлагается метод сверхразрешения (измельчения сетки пикселов) цифровых изображений, основанный на применении линейной фильтрации к дискретному сигналу, дополненному нулями между отсчетами (пикселами). Для синтеза восстанавливающей системы вводится в рассмотрение непрерывно-дискретная модель наблюдения, характерная для реальных систем формирования изображений, в соответствии с которой изначально непрерывный сигнал сначала претерпевает линейные (динамические) искажения, а затем подвергается дискретизации и воздействию аддитивного шума. Для такой модели наблюдения строится процедура оптимального по критерию среднеквадратического отклонения процедура восстановления. Использование непрерывно-дискретной модели позволяет более адекватно описать искажения изображений, а также оценить остаточную погрешность такого восстановления, что полезно для решения ряда других задач (например, комплексирования изображений). В теоретической части статьи приводится общая схема линейного сверхразрешения сигнала, выводятся выражения для импульсной и частотной характеристики оптимальной восстанавливающей системы, а также для ошибки такого восстановления. Для краткости изложения материала всё описание ведется для одномерного сигнала, но полученные результаты предполагают естественное обобщение на случай двумерных изображений. Расчетный параграф статьи посвящен анализу ошибки сверхразрешающего восстановления в зависимости от параметров модели наблюдения. Продемонстрировано существенное превосходство предлагаемого метода по точности в сравнении с линейной интерполяцией, обычно применяемой при измельчении сетки пикселов изображения.

Бесплатно

Журнал