Статьи журнала - Нанотехнологии в строительстве: научный интернет-журнал

Все статьи: 903

Новые высокоэффективные нанодобавки для фотокаталитических бетонов: синтез и исследование

Новые высокоэффективные нанодобавки для фотокаталитических бетонов: синтез и исследование

Фаликман Вячеслав Рувимович, Вайнер Александр Яковлевич

Статья научная

Нанотехнологии открывают широкие перспективы для создания нанокатали- заторов, которые все чаще находят применение для решения проблем защиты окружающей среды. Их поведение прямо связано с уникальными физико-химическими свойствами, которые обусловлены квантово-размерными эффектами, а также большой удельной поверхностью. Известно, что всё более заметным становится присутствие фотокатализаторов в строительном сегменте наноматериалов. Одним из знаковых достижений последних лет является получение фотокаталитически активных цементных композитов, в том числе цементов и бетонов, изготавливаемых с использованием наночастиц диоксида титана TiO 2. Они получили широкое практическое распространение при производстве самоочищающихся конструкций и обеспечении чистоты воздушного бассейна мегаполисов. Весьма актуальными представляются дальнейшие исследования по созданию новых высокоэффективных фотокатализаторов на основе наночастиц TiO 2, которые смогли бы существенным образом повысить технические характеристики фотокаталитических цементов и бетонов. В работе предложен усовершенствованный способ получения фотокатализаторов на основе наночастиц TiO 2, нанесенных на различные инертные носители c развитой удельной поверхностью, включая нанодиоксид кремния. Впервые показана возможность использования таких продуктов в качестве высокоэффективных фотокатализаторов в составе цементных и гипсоцементных систем для конверсии оксидов азота и летучих органических веществ. Установлено, что эффективность синтезированных образцов в 1,5...3,0 раза выше, чем у коммерческого образца фотокаталитического нанодиоксида титана. Применение равновесной механической смеси нанодиоксида титана и инертного носителя менее эффективно и, в целом, подчиняется закону «разбавления».

Бесплатно

Новые защитные покрытия на основе наночастиц серы, полученные из полисульфида калия

Новые защитные покрытия на основе наночастиц серы, полученные из полисульфида калия

Массалимов Исмаил Александрович, Чуйкин Александр Евгеньевич, Массалимов Бурхан Исмаилович, Мустафин Ахат Газизьянович

Статья научная

Введение. Пропитка новым раствором на основе полисульфида калия показала отличные результаты гидрофобизации цементного камня и цементно-песчаного раствора за счет образования наноразмерного водоотталкивающего покрытия на поверхности пор из наночастиц серы, образовавшихся в результате разрушения молекулы в процессе высыхания. Инновационный раствор на основе полисульфида калия относится к многосернистым соединениям, из которых в результате разрушения молекул полисульфида на поверхности формируется наноразмерный слой из частиц серы. Материалы и методы исследования. Для пропитки использовали растворы полисульфида калия разной плотности, свойства растворов проверяли на кубических образцах с ребром 40 мм, изготовленных на основе цемента и цементно-песчаного раствора. Характеристики частиц оценивали с помощью лазерного анализатора размера частиц, электронного микроскопа и дифрактометра. Результаты. Анализ показал, что средний размер частиц, образующих защитное покрытие, равен 20 нм, они имеют сферически симметричную форму и кристаллизуются в орторомбическую структуру кристаллической решетки. Обработка бетона раствором полисульфида калия обеспечивает образование на поверхности пор камня покрытия на основе наноразмерной серы, которое частично заполняет поровое пространство и, обладая гидрофобностью, уменьшает водопоглощение образцов в 2-3 раза, а водопоглощение образцов, пропитанных под вакуумом в течение 0,5 часов, снижается до значений 1,3-1,9%. Результаты и обсуждение. Модифицирование бетона разработанной нами пропиточной композицией раствором на основе полисульфида калия позволяет существенно снизить водопоглощение и, соответственно, повысить долговечность. Пропиточный раствор на основе полисульфида калия является устойчивым в интервале концентраций 1,15-1,35 г/см3, при пропитке проникает в поровую структуру бетона на уровне до 4 см и более, в зависимости от роста и структуры образца. При высыхании материала в его порах из полисульфидного раствора выкристаллизовываются наночастицы серы, частично заполняющие поровое пространство и формирующие защитное долговечное нерастворимое гидрофобное покрытие, затрудняющее проникновение воды в поры бетона, но сохраняющее его паропроницаемость, что важно для стеновых и облицовочных материалов. Выводы. Пропитка дорожных строительных материалов и изделий из бетона композицией на основе полисульфида калия улучшает их эксплуатационные свойства, повышает долговечность и стойкость к атмосферным воздействиям, что позволяет рекомендовать ее для применения в климатических условиях Российской федерации.

Бесплатно

Новые технические решения в области нанотехнологий. Часть 1

Новые технические решения в области нанотехнологий. Часть 1

Иванов Л.А., Муминова С.Р.

Статья научная

Новые технические решения, в т.ч. и изобретения, в области нанотехнологий и наноматериалов позволяют в строительстве, жилищно-коммунальном хозяйстве, смежных отраслях экономики добиться значительного эффекта. Изобретение «Способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и ультразвука (RU 2575029)» относится к области сорбционной очистки поверхностных и подземных вод с высоким содержанием титана и его соединений и может быть использовано для очистки воды с получением безопасной для здоровья питьевой воды. Способ очистки поверхностных и подземных вод от титана и его соединений включает приведение загрязненных вод в контакт с адсорбентом, где в качестве адсорбента используют углеродные нанотрубки, которые помещают в ультразвуковую ванну и воздействуют на углеродные нанотрубки и очищаемую воду в режиме 1-15 мин, с частотой ультразвука 42 кГц и мощностью 50 Вт. Технический результат заключается в 100%-ной очистке воды от титана и его соединений за счет очень высоких адсорбционных показателей углеродных нанотрубок. Также представляют интерес для специалистов следующие изобретения в области нанотехнологий: способ получения массивов углеродных нанотрубок с управляемой поверхностной плотностью (RU 2569548), листовой слоистый полимерный износостойкий композиционный материал (RU 2576302), автоматизированная технологическая линия для поверхностной модификации металлооксидными наночастицами полимерного волокнистого материала (RU 2542303), способ получения наноразмерного порошка алюмоиттриевого граната (RU 2576271), способ получения пенополиуретанового нанокомпозита (RU 2566149), способ получения кристаллических алмазных частиц (RU 2576055), способ получения нанопористых полимерных материалов (RU 2576049), нанопористая полимерная пена, имеющая высокую пористость (RU 2561267), способ получения керамического композитного материала на основе оксидов алюминия и циркония (RU 2549945), каталитическая композиция для синтеза углеродных нанотрубок (RU 2575935), способ получения функционализированного графена и функционализированный графен (RU 2576298) и др.

Бесплатно

Новые технические решения в области нанотехнологий. Часть 2

Новые технические решения в области нанотехнологий. Часть 2

Иванов Леонид Алексеевич, Муминова Светлана Рашидовна

Статья научная

Новые технические решения, в т.ч. и изобретения, в области нанотехнологий и наноматериалов позволяют в строительстве, жилищно-коммунальном хозяйстве, смежных отраслях экономики добиться значительного эффекта. Изобретение «Способ диагностики дефектов на металлических поверхностях (RU 2581441)» относится к способам обнаружения дефектов и трещин на поверхности металлического оборудования и трубопроводов. На поверхность контролируемого объекта последовательно наносят в направлении от большего к меньшему диаметру суспензию наночастиц металла, обладающих свойством фотолюминесценции, имеющих сферическую форму и разный условный диаметр. После каждого нанесения производят сушку поверхности с последующим удалением с нее избыточных наночастиц. Затем осуществляют построчное сканирование поверхности объекта лучом фемтосекундного лазера и одновременно регистрируют интенсивность сигнала двухфотонной люминесценции в каждой исследуемой области с фиксированием местоположения указанной области и получением карты распределения интенсивностей свечения наночастиц, возбуждаемых лазерным излучением. На полученных картах выделяют области с максимальным значением интенсивности свечения и по координате и форме зафиксированной области свечения судят о координате и форме обнаруженного дефекта, а его поперечный размер принимают равным условному диаметру нанесенных наночастиц на данном этапе нанесения. Технический результат - повышение надежности и достоверности исследования. Также представляют интерес для специалистов следующие изобретения в области нанотехнологий: способ получения поковок из жаропрочных гранулированных сплавов (RU 2583564); способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава (RU 2583560); способ получения нано-структурированных покрытий титан-никель-цирконий с эффектом памяти формы (RU 2583222); способ получения нанокомпозитов на основе наночастиц золота, покрытых оболочкой из оксида кремния, и квантовых точек (RU 2583022); способ изготовления полимерного композита на основе ориентированных углеродных нанотрубок (RU 2560382); способ получения ферромагнитных металлических наночастиц с твердой изоляционной оболочкой (RU 2582870); способ синтеза эндоэдральных фуллеренов (RU 2582697); оптическая измерительная система и способ количественного измерения критического размера для наноразмерных объектов (RU 2582484); способ получения наноструктурированного покрытия и устройство для его реализации (RU 2575667) и др.

Бесплатно

Новые технические решения в области нанотехнологий. Часть 3

Новые технические решения в области нанотехнологий. Часть 3

Иванов Леонид Алексеевич, Муминова Светлана Рашидовна

Статья научная

Новые технические решения, в т.ч. и изобретения, в области нанотехнологий и наноматериалов позволяют в строительстве, жилищно-коммунальном хозяйстве, смежных отраслях экономики добиться значительного эффекта. Изобретение «Наномодифицированное эпоксидное связующее для композиционных материалов (RU 2584013)» относится к области создания композиционных материалов на основе волокнистых наполнителей и наномодифицированного эпоксидного связующего и может быть использовано при производстве стеклопластиковых труб и других изделий, получаемых методом намотки и применяемых в тепловых сетях, системах горячего водоснабжения с сетевой водой, системах водоснабжения, с рабочей температурой до 150оС. Наномодифицированное эпоксидное связующее для композиционных материалов включает эпоксидную диановую смолу и аминный отвер-дитель. Техническим результатом изобретения является снижение длительности отверждения связующего, повышение теплостойкости и прочностных характеристик отвержденных композиций, расширение ассортимента эпоксидных композиций с улучшенными технологическими и эксплуатационными характеристиками. Также представляют интерес для специалистов следующие изобретения в области нанотехнологий: композиционный материал на основе сплавов системы sn-sb-cu и способ его получения (RU 2585588), наномодифицированный эпоксидный сферопластик (RU 2587454), способ производства стеклоизделий с электропроводящей поверхностью (RU 2586123), способ получения массивов углеродных нанотрубок с управляемой поверхностной плотностью (RU 2569548), солнечная энергетическая установка (RU 2586034), способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и ультразвука (RU 2575029), эластомерные нанокомпозиты, композиции нанокомпозитов и способы их получения (RU 2561170), способ настройки термоустойчивого датчика давления на основе тонкоплёночной нано- и микроэлектромеханической системы (RU 2581454), способ определения цитотоксичности наноматериалов на основе оксида цинка (RU 2587630), способ получения наностержней диоксида марганца (RU 2587439), способ определения свойств материала наноинденти-рованием (RU 2551263) и др.

Бесплатно

Новые технические решения в области нанотехнологий. Часть 5

Новые технические решения в области нанотехнологий. Часть 5

Иванов Леонид Алексеевич, Муминова Светлана Рашидовна

Статья научная

Новые технические решения, в т.ч. и изобретения, в области нанотехнологий и наноматериалов позволяют в строительстве, жилищно-коммунальном хозяйстве, смежных отраслях экономики добиться значительного эффекта. Изобретение «Способ приготовления укрепляющего раствора (RU 2601885)» относится к строительству и может быть использовано для укрепления грунтовых оснований фундаментов строящихся и восстанавливаемых зданий и сооружений методом инъектирования. Технический результат заключается в обеспечении возможности увеличения подвижности укрепляющего раствора и, соответственно, объема пространства, заполняемого таким раствором через грунтовые разрывы. Способ приготовления укрепляющего раствора включает перемешивание портландцемента, воды, введение нанодобавки и обработку раствора. В качестве нанодобавки используют смесь нанодисперсных частиц двуокиси кремния разной удельной поверхности. В воду вводят указанную нанодобавку до получения коллоидного раствора заданной концентрации, который механически перемешивают и дополнительно обрабатывают ультразвуком. Далее полученный коллоидный водный раствор перемешивают с требуемым количеством воды затворения, а затем - с портландцементом. Для существенного увеличения подвижности укрепляющего раствора целесообразно использовать коллоидный водный раствор смеси нанодисперсных частиц двуокиси кремния разной удельной поверхности, с концентрацией порядка 20^35 мас.% Также представляют интерес для специалистов следующие изобретения в области нанотехнологий: способ формирования кристаллического нанопористого оксида на сплаве титан-алюминий (RU 2601904), нанопористая полимерная пена, имеющая высокую пористость (RU 2561267), способ введения добавок в полимеры (RU 2585003), способ переработки природных битумов (RU 2600448), способ получения наноразмерного порошка, стабилизированного диоксида циркония (RU 2600400), сырьевая смесь для изготовления газобетона автоклавного твердения (RU 2600398), применение модифицированных наночастиц в древесных материалах для уменьшения эмиссии летучих органических соединений (RU 2600050), способы повышения прочности бетона при сжатии с использованием нанокремнезёма, полученного из гидротермального раствора (RU 2599739) и др.

Бесплатно

Новые технические решения в области нанотехнологий.. Часть 4

Новые технические решения в области нанотехнологий.. Часть 4

Иванов Леонид Алексеевич, Муминова Светлана Рашидовна

Статья научная

Новые технические решения, в т.ч. и изобретения, в области нанотехнологий и наноматериалов позволяют в строительстве, жилищно-коммунальном хозяйстве, смежных отраслях экономики добиться значительного эффекта. Изобретение «Способ получения связующего на основе фенол-формальдегидной смолы резольного типа для слоистого материала, связующее и слоистый материал на основе связующего и армирующей волокнистой основы (RU 2594014)» относится к полимерным композиционным материалам, которые могут быть использованы для изготовления изделий конструкционного назначения в авиационной, строительной, автомобильной, бытовой и других областях. Способ получения связующего на основе фенолформальдегидной смолы резольного типа для слоистого материала заключается в смешении компонентов. Смолу и фосполиол берут в растворителе, представляющем собой смесь этилового спирта и диметилформа-мида. При этом смолу, фосполиол и растворитель берут при соотношении компонентов, мас.%: смола - 23,7, растворитель - 75,3, фосполиол - 1,0. В полученную смесь компонентов диспергируют наномодификатор, в качестве которого берут механоактивированный наноалмаз, полученный в шаровой мельнице при соотношении масс шаров и исходного детонационного наноалмаза 20:1, соответственно, при скорости вращения шаров мельницы 900 об/мин в течение 5 минут. Слоистый материал на основе связующего и армирующей волокнистой основы из бумаги на основе ароматического полиамида имеет аппретирующий слой из состава, содержащего полиамид, этиловый спирт и воду. Указанное связующее нанесено равномерно на поверхность аппретирующего слоя в количестве, равном массе волокнистой основы. Техническим результатом является получение связующего на основе фенолформальдегидной смолы без использования легковоспламеняющейся жидкости и высокотоксичных веществ, повышение значения напряжения сдвига при сжатии изделий из слоистого материала в 3 раза и понижение их горючести в 1,3 раза. Также представляют интерес для специалистов следующие изобретения в области нанотехнологий: способ получения углеродных наноструктур, модифицированных металлом (RU 2593875); способ глубокой очистки моносилана (RU 2593634), способ получения проводящих сетчатых микро- и наноструктур и структура для его реализации (RU 2593463), способ получения ферромагнитной жидкости (RU 2593392), способ получения наноструктурного диоксида титана (RU 2593303), способ получения нанокомпозита FeNi3/C в промышленных масштабах (RU 2593145), способ получения наноматериалов модификацией поверхности металлсодержащего каркасного соединения (RU 2593021) и др.

Бесплатно

О влиянии углеродных наноматериалов на свойства цемента и бетона

О влиянии углеродных наноматериалов на свойства цемента и бетона

Урханова Лариса Алексеевна, Лхасаранов Солбон Александрович, Буянтуев Сергей Лубсанович, Кузнецова Анастасия Юрьевна

Статья научная

В статье представлены результаты исследований по модифицированию цементного камня и бетона углеродными наноматериалами, полученными в качестве сопутствующего продукта при плазменной газификации угля. Под действием электродуговой плазмы из материала электродов и угля, подаваемого для газификации, в одной установке попутно образуются углеродные наноматериалы - фуллеренсодержащая сажа. Данный способ производства углеродных наноматериалов является перспективным ввиду меньшего влияния на увеличение себестоимости конечного композита. Полученные при плазменной обработке углеродные наноматериалы имеют как компактную, так и волокнистую ультрадисперсную структуру, что указывает на наличие в ней таких основных форм наночастиц, как «луковичные углеродные структуры» (многослойные, гиперфуллерены) и «нитевидные углеродные структуры» (нанотрубки, нановолокна). Учитывая сложность введения и равномерного распределения в цементной матрице углеродных наночастиц, склонных к агрегированию, про водилась ультразвуковая обработка углеродных наноматериалов и воды за-творения. Установлена оптимальная дозировка углеродных наноматериалов в количестве 0,01 масс.%, при которой получены максимальные физико-механические показатели цементного камня. Установлено, что при использовании суперпластификаторов различной природы углеродные наноматериалы эффективно распределяются в объеме воды затворения, однако комплексный эффект улучшения показателей цемента варьируется в зависимости от вида суперпластификатора. Исследовано изменение температуры гидратации цемента при введении углеродных наноматериалов и различных суперпластификаторов. Показано, что при введении углеродных наноматериалов происходит увеличение максимальной температуры при гидратации. Введение углеродных наноматериалов повышает физико-механические и эксплуатационные свойства цемента и бетона за счет ускорения процессов гидратации портландцемента, улучшения микроструктуры и снижения пористости цементного камня. Методом ртутной порометрии установлено снижение общей пористости цементного камня при введении углеродных наноматериалов, а также изменение количества микропор цементного камня разных размеров. Определены физико-механические свойства и эксплуатационные свойства бетонов при введении углеродных наноматериалов. Установлено улучшение прочности бетона в разные сроки твердения, морозостойкости, водопо-глощения и водостойкости бетона.

Бесплатно

О возможности использования лигносульфоната натрия в качестве наноорганической основы для создания почвоподобных тел в целях рекультивации техногенно-деградированных земель

О возможности использования лигносульфоната натрия в качестве наноорганической основы для создания почвоподобных тел в целях рекультивации техногенно-деградированных земель

Дорогая Е.С., Сулейманов Р.Р., Кузина Е.В., Юркевич М.Г., Бахмет О.Н.

Статья научная

Введение. В настоящее время разработано значительное количество стратегий восстановления карьеров, основывающихся на разных аспектах воздействия на почву: смешивания верхнего слоя почвы с пустой породой выработанных карьеров; внесения органических отходов; применения мульчирования и полимерных структурообразователей; использования адаптированных растений. В данном исследовании мы предприняли попытку объединить положительные стороны перечисленных ранее методов. В связи с чем целью наших исследований явилось создание искусственных почвоподобных тел с заданными агроэкологическими свойствами. Предполагаем дальнейшее использование полученной смеси в качестве прослойки между материалом отвалов карьера и плодородной почвой, наносимой на рекультивируемую поверхность с последующей высадкой местных видов растительности. Материалы и методы. Исследования по изучению возможности рекультивации отвалов выработанного рудника проводились в условиях модельного опыта с использованием в качестве органической основы почвоподобного тела отхода целлюлозно-бумажной промышленности - лигносульфоната натрия (ЛН). Отобранный с отвалов рудника мелкозем (М) смешивали с ЛН в соотношении 1/0,5, 1/1 и 1/2, для ускорения разложения органического вещества в зависимости от схемы опыта добавляли штаммы бактерий Acinetobactercalcoaceticus и Pseudomonas kunmingensis. Полученные смеси компостировались в течение трех месяцев при комнатной температуре, перемешивании и поддержании режима влажности. Фитотоксичность полученных смесей оценивалась при проращивании семян скороспелого редиса с торговым названием «18 дней». Результаты и обсуждение. Внесение ЛН в мелкозем существенно повысило содержание органического вещества и снизило кислотность среды. Внесение азота на вариантах с ЛН по сравнению с вариантами, содержащими только ЛН, привело к значительному увеличению содержания щелочногидролизуемого азота. Заключение. Результаты исследований показали, что добавление лигносульфоната натрия к мелкозему способствует снижению кислотности, увеличению содержания органического вещества и щелочногидролизуемого азота в смеси, а также снижению токсичности субстрата.

Бесплатно

О дальнейшем развитии электронного издания «Нанотехнологии в строительстве: научный интернет-журнал» в 2015 году

О дальнейшем развитии электронного издания «Нанотехнологии в строительстве: научный интернет-журнал» в 2015 году

Гусев Борис Владимирович

Статья научная

Электронное издание «НАНОТЕХНОЛОГИИ В СТРОИТЕЛЬСТВЕ: научный интернет-журнал» в 2015 году добилось значительных успехов, признано организациями, учеными и специалистами не только в России, но и за рубежом: • расширилась география авторов издания, открыты новые рубрики и разделы; • издание включено в системы цитирования (базы данных): Global Impact Factor (Австралия), EZB (Германия), ResearchGate (США), DOAJ (Швеция); • издание включено в Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук; • издание осуществило информационную поддержку ведущих мероприятий строительной отрасли и наноиндустрии (BATIMAT, IV Международный конгресс предприятий наноиндустрии, SIBBUILD и др.).

Бесплатно

О международной премии

О международной премии

Другой

Бесплатно

Журнал