Обработка металлов давлением. Технологии и машины обработки давлением. Рубрика в журнале - Вестник Южно-Уральского государственного университета. Серия: Металлургия

Статья научная
Наиболее жестко геометрические характеристики поперечного сечения регламентируются для труб, предназначенных для подводных участков, где допустимое отклонение от теоретической окружности составляет по телу трубы 1…1,5 % от диаметра и 0,75…1 % от диаметра по торцам. Форма поперечного сечения труб большого диаметра образуется в процессе комплекса деформационных операций по формированию из штрипса трубной заготовки, корректировки этой геометрии под действием сварочных напряжений и калибровки в процессе финишной операции экспандирования. Результаты операции экспандирования во многом зависят от геометрических характеристик заготовки перед этой операцией и от кинематики контактного взаимодействия инструмента и заготовки непосредственно при экспандировании. Важную роль при этом играют силы трения между контактирующими поверхностями экспандерной головки и трубы, поскольку под влиянием этих сил может происходить перераспределение тангенциальных деформаций и, соответственно, искажение геометрии. В статье представлены экспериментальные материалы по определению коэффициента трения, полученные в условиях, максимально приближенных к условиям экспандирования труб большого диаметра. Приведены методика проведения эксперимента, описание лабораторной установки с необходимыми средствами измерения. Выполнена оценка влияния основных технологических факторов на величину коэффициента трения.
Бесплатно

Статья научная
При вальцевой формовке заготовки для труб большого диаметра вся работа деформации реализуется силами трения, которые передают штрипсу энергию привода через поверхность контактного взаимодействия с валками. Для характерной в процессе формовки специфики контактной границы чисто обработанного и закаленного валка с поверхностью заготовки, покрытой слоем вторичной окалины, в литературе практически отсутствуют данные по коэффициентам трения в таких условиях. Поскольку активные силы трения определяют ресурс деформационных возможностей процесса без пробуксовки валков относительно штрипса, достоверные данные о силах трения необходимы для расчета технологических режимов и оценки нагрузок на элементы трансмиссии. В статье представлены экспериментальные материалы по определению коэффициента трения, полученные в условиях, максимально приближенных к условиям формовки трубной заготовки на трехвалковой гибочной машине. Приведены методика проведения эксперимента, описание лабораторной установки с необходимыми средствами измерения. Выполнена оценка влияния основных технологических факторов на величину коэффициента трения.
Бесплатно

Статья научная
На основании развития энергетического метода решения технологических задач обработки металлов давлением, основоположником которого является В.Н. Выдрин, получены расчетные формулы для определения мощности, расходуемой на процесс волочения проволоки в монолитной волоке. Мощность электрической энергии, преобразуемая электродвигателем в механическую энергию и подводимая к барабану волочильного стана посредством редуктора, расходуется на преодоление сил трения в монолитной волоке и на формоизменение металла при волочении. В статье приведена методика расчета коэффициента полезного действия (КПД) процесса волочения проволоки. Установлено, что повышения механических свойств проволоки можно достичь за счет снижения неравномерности деформации по ее сечению. Определено, что с точки зрения формирования механических свойств и сохранения запаса пластичности проволоки маршрут волочения необходимо строить с максимально допустимыми по условию безобрывного волочения единичными степенями деформации, минимальным углом волоки и при обеспечении низкого коэффициента трения. Предложено при построении ресурсосберегающих маршрутов волочения руководствоваться не только критерием качества проволоки, характеризующимся уровнем механических свойств, но и энергоэффективностью процесса, который предложено оценивать по КПД процесса. Расчет мощности, расходуемой на формоизменение и преодоление сил трения в очаге деформации, показал, что КПД процесса волочения повышается с увеличением единичной степени деформации, уменьшением величины рабочего угла волоки и значения коэффициента трения. Анализ типового маршрута волочения с точки зрения этих принципов выявил, что эффект ресурсосбережения достигается при применении монолитных волок с рабочим углом 8°, при условии согласования его с остальными параметрами очага деформации (единичной степенью деформации и коэффициентом трения, обеспечиваемого качеством подготовки поверхности заготовки и применяемой технологической смазкой).
Бесплатно