The results of the specialists’ and scientists’ researches. Рубрика в журнале - Nanotechnologies in Construction: A Scientific Internet-Journal

Публикации в рубрике (28): The results of the specialists’ and scientists’ researches
все рубрики
Prescription and technological efficiency of sedimentary rocks of various composition and genesis in cement systems

Prescription and technological efficiency of sedimentary rocks of various composition and genesis in cement systems

Balykov A.S., Nizina T.A., Kyashkin V.M., Volodin S.V.

Статья научная

Introduction. Active mineral additives that allow controlling the structure formation processes and properties of cement systems are important components of modern modified concretes. Among the numerous types of modifiers for cement composites, the most effective ones include siliceous and aluminosilicate additives containing a significant amount of nanoscale particles, in particular, nanoparticles of silicon dioxides, clays, aluminum oxides and iron oxides. At the same time, common sedimentary rocks, such as diatomites, trepels, opokas, polymineral clays, etc., along with industrial wastes (silica fumes, fly ashes, metallurgical slags) can be promising raw materials for obtaining such modifiers. The purpose of this study was to establish the influence regularities of mineral additives based on sedimentary rocks of various composition and genesis on the technological and physico-mechanical properties of cement systems with the identification of the most effective modifiers. Methods and materials. Siliceous rocks (diatomite and opoka), calcined polymineral clays and carbonate rocks (dolomite and chalk) from several deposits of the Republic of Mordovia were used as mineral additives. The study of the chemical and mineralogical composition of sedimentary rocks was carried out using X-ray spectral fluorescence spectrometry and X-ray powder diffraction methods. In addition to the chemical and mineralogical composition, at the initial stage of the study, the specific surface area of mineral additives and Portland cement was determined on the PSX-12 dispersion analysis device using the Kozeny-Carman method. Prescription and technological efficiency of the applied mineral modifiers was evaluated by their effect on water demand, water-holding capacity, flowability of cement paste and mixed cement binder activity. The physical and mechanical characteristics of cement systems were determined using standardized and well-known authorial methods. Results and discussion. There were established correlation dependences between indicators of water demand, water-holding capacity, flowability of cement systems and specific surface of mineral additives used. In addition, relationship between the activity index of the studied modifiers and the content of silicon dioxide in their composition was revealed. Conclusions. According to the totality of the conducted studies, diatomite, opoka and calcined polymineral clay were identified as the most promising types of mineral additives. The increased effectiveness of these modifiers in cement systems is due to the peculiarities of their chemical and mineralogical composition, in particular, the presence of active silica-containing components (reactive minerals with an amorphized structure) such as opal-cristobalite-tridymite phase in diatomite and opoka as well as products of partial thermal destruction (dehydroxylation) of minerals of kaolinite and illite groups in the calcined polymineral clay.

Бесплатно

Production of polycrystalline silicon by chlorination from rice husk and purification of chlorine-containing gases by adsorption method

Production of polycrystalline silicon by chlorination from rice husk and purification of chlorine-containing gases by adsorption method

Zhanbolot K.Aidaraliev, Imilya A.Rysbaeva, Bekbolot kyzy Baktygul, Mairam K.Chimchikova, Rashid kyzy Burulcha

Статья научная

Introduction. In the article we analysed the technology for producing silicon from rice husks. The analysis showed that the production of polycrystalline and amorphous silicon based on rice waste in the form of rice husk solves the simultaneous disposal of rice waste. Rice husk processing produces valuable organic products, and the residual solid waste mainly contains silicon, carbon and other trace metal elements. Therefore, obtaining silicon and silicon-containing materials from rice husk is relevant. Methods and materials. Various methods for obtaining silicon from rice husk are given. Among them, the methods of chlorination and sublimation were chosen, and experimental installations were assembled to conduct the experiment. The object of study was samples obtained from rice husks of Uzgen rice in the Kyrgyz Republic. Results. The composition and structure of rice husks for the production of crystalline silicon were studied. Lime milk was used to purify toxic chlorine-containing gases in the air of the working area and atmospheric air. The condensing system, designed to capture volatile chlorides, has two receivers. In the first receiver at a temperature of 60°C, condensation of iron, aluminum and magnesium chlorides occurs. It has been established that highly volatile silicon (IV) chloride (SiCl4) at a given temperature remains in the gaseous phase and is completely distilled off in the next receiver of the refrigerator. This indicates that the silicon is in the form of SiCl4 (60°C) and condenses only at a lower temperature in the next receiver. The data obtained indicate that when the temperature rises to 200°C, the process of chlorination of metal compounds initiates. The optimal conditions for maximum extraction of metals and silicon tetrachloride from rice husk were identified: temperature 500–550°C and time 120 minutes. Non-volatile chlorides of calcium, sodium, potassium and other elements form a floating mixture at 450°C. During the reaction, metal chlorides harden and settle on the cold walls of the reactor. Therefore, at this temperature there is not enough heat to maintain them in a gaseous state, and they condense to form solid precipitates. Lime milk containing CaO – 130 g/dm2 is a very effective and cheap means for purifying toxic chlorine-containing gases in the air of the working area and atmospheric air. At high temperatures (1050–1100°C), it is possible to activate chemical reactions between the carrier gas (hydrogen) and silicon chloride (SiCl4), which promotes the decomposition of SiCl4 into components, including silicon and hydrogen chloride, and also provides certain conditions for the formation and deposition silicon crystals. Conclusion. A technology for producing polycrystalline silicon by chlorination from rice husks of Uzgen rice of the Kyrgyz Republic has been studied and developed.

Бесплатно

Resource-saving nanotechnologies in waste water treatment

Resource-saving nanotechnologies in waste water treatment

Borisova O.N., Doronkina I.G., Feoktistova V.M.

Статья научная

This paper examines the prospective field of nanotechnology development in the area of wastewater treatment and water processing. The introduction showed (no need for comma) that the Russian problem is not the lack of water – but its quality. Water treatment is needed to prevent water facilities from pollution. Self-cleaning methods cannot withstand the massive impact of pollutants, some of which are unknown for their natural reproduction processes. The degree of purification depends on the concentration of the pollution and the content of different substances within it. The use of nanotechnologies in effluent neutralization (EN) processes will allow removing insoluble sludges, wastes of chemical industry, and harmful microorganisms. Methods and materials. This work presently uses analytical methods to study nanotechnologies. Nanofiltration and membrane methods are frequently used in wastewater treatment. Methods such as arc charge, ablation, and gas-phase deposition are applied to obtain carbon nanotubes. Results. The authors describe promising carbon nanomaterials for production of membranes used in purification/decontamination/ desalination of water. The new generation of membranes for filtering, disinfection, and desalination have been shown. These include graphene and carbon nanotubes which present absolutely new nanomaterial. Discussion. It was revealed that such membranes are characterized not only by a high water percolation rate, but also by extraordinary selectivity. Such membranes are particularly promising in the field of biomedicine, as large membranes are necessary for the nanofiltration and desalination processes. Conclusions. This paper examines new ecological and resource-saving technologies making possible improved research, industrial and commercial activities (which by means of practical implementation of inventions will lead to improved products), technologies and organizational decisions. One of the most promising areas for the development of nanotechnologies applied in waste water treatment is the advancement of membrane technology employing innovative materials, specifically graphene and carbon nanotubes.

Бесплатно

Siliceous rocks as modifiers of structure of photocatalytic self-cleaning concrete. Assessment of the effect on the phase composition of cement stone

Siliceous rocks as modifiers of structure of photocatalytic self-cleaning concrete. Assessment of the effect on the phase composition of cement stone

Balykov A.S., Nizina T.A., Kyashkin V.M., Chugunov D.B.

Статья научная

Introduction. Currently one of the focus areas for the development of construction material science is the creation of self-cleaning concretes characterized by polydisperse multicomponent composition with the presence of nanoscale photocatalytic additives, primarily based on TiO2. These photoactive modifiers give the material a number of positive properties, including the ability to decompose atmospheric pollutants, to self-clean the surface, etc. The promising method for improving the functional characteristics of titanium oxide photocatalysts is the creation of nanostructured systems with ‘core (substrate) – shell (photocatalyst)’ architecture. Previous research results show that the final efficiency of the synthesized composite photocatalytic modifiers largely depends on the level of substrate reactivity in the cement system. The purpose of this study is to investigate the impact of three types of siliceous rocks (diatomite, trepel, and opoka) on cement stone formation processes and to identify the most effective raw materials for use as photocatalytic carriers in self-cleaning concrete compositions. Methods and materials. The methods of Kozeny-Karman, laser diffraction and X-ray fluorescence spectrometry were used to determine the specific surface area and parameters of granulometric and chemical compositions of silicite samples. The phase composition of siliceous rocks and modified cement systems was studied by X-ray powder diffractometry. Results and discussion. The main parameters of granulometric composition of diatomite, trepel and opoka were determined. The predominance of reactive modifications of free silica (47.6–78.0 wt. %), represented by amorphous opal-A or cryptocrystalline OCT-phase (opal-CT), were revealed in the structure of silicites. It was found that increasing the dosages of silica-containing additives from 0 to 10% resulted in decreased by 10–27% in the quantity of portlandite in the phase composition of cement stone aged 28 days, while the content of high-strength low-basic calcium hydrosilicates (C–S–H (I)) increased by 11–27%. Conclusion. The chemical and mineralogical composition peculiarities of silicites, as well as the nature of the impact of silica-containing modifiers on the structure formation processes of cement systems, determine the prospects of using opal-cristobalite rocks as dispersed photocatalyst carriers for self-cleaning concrete.

Бесплатно

Structure formation in the «clay soil – carbide sludge» dispersed system

Structure formation in the «clay soil – carbide sludge» dispersed system

Sokolova Yu.V., Frolova M.A., Ayzenshtadt A.M., Korolev E.V.

Статья научная

Introduction. Clay soil is a multiphase, multicomponent aluminosilicate dispersed system with specific properties determined not only by its composition but also by the formation of coagulative and transition contacts (binds) between the soil particles. One of the methods of changing soil properties is the introduction of active mineral additives that promote the formation of phase contacts (binds) between soil particles as a result of the pozzolanic reaction. The effectiveness of using carbide sludge, which is a multi-tonnage lime-containing waste (the content of active calcium oxide reaches 56%) as an additive, has been proved. However, to date, the proposed mechanism of interaction in the «clay soil – carbide sludge» system is based only on the literature data and has not been experimentally verified. The purpose of this research is to study the mechanism of structure formation in the «clay soil – carbide sludge» dispersed system. Methods and materials. A soil model has been created by mixing saponite-containing material with sand, which corresponds to the composition and properties of sandy loam. The carbide sludge in the form of a suspension was selected from the sludge collector, dried to a constant mass and sieved. Microstructural analysis, differential thermal analysis (DTA), and X-ray phase analysis were used to study the mechanism of structure formation. Results and discussions. Based the results of the differential thermal analysis, there is a decrease in the intensity of the endothermic effect in the range of 460 to 470°C associated with the decomposition of calcium hydroxide in the treated sample. Additionally, an endothermic effect is observed at 750°C, which indicating the decomposition of calcium silicate hydrate. The results of differential thermal analysis are confirmed by X-ray phase analysis, which shows the presence of tobermorite group hydrosilicates in the reaction medium. The study of the microstructure of the analyzed mixtures revealed a decrease in the specific volume of pores with a diameter of 4–5 nm in the modified clay soil. This is associated with gelling from particles of new hydrate formations. Besides that, the volume of pores with a diameter of more than 6 nm increased, which indicates the process of contraction. Conclusion. The mechanism of structure formation in the «clay soil – carbide sludge» system has been established.

Бесплатно

Suitability of basalt raw materials of the Kyrgyz Republic for the production of superthin and continuous fibers

Suitability of basalt raw materials of the Kyrgyz Republic for the production of superthin and continuous fibers

Akymbek A. Abdykalykov, Zhanbolot K.Aidaraliev, Zhypargul Abdykalyk kyzy, Altynbek Zh.Kuduev, Burulcha Rashid kyzy

Статья научная

Introduction. Literature analysis and patent search revealed that basalt rock and its fibers have exceptional physical and technical characteristics and alongside abundant raw material reserves. Based on this, the use of basalt rocks and their fibers as a material for the development of advance composite materials with high performance characteristics is a promising direction. Diverse technological fields and economic sectors, as well as various material requirements, necessitate a spectrum of systems, compositions, and properties for basalt and its melts, whether for generating superthin or continuous fibers. Methods and materials. The chemical and mineralogical compositions of some basalt rocks from deposits in the Kyrgyz Republic were studied to determine their suitability for production of superthin fibers and continuous fibers. The acidity modulus and fusibility modulus were determined by calculation based on the chemical composition of basalts of the Kyrgyz Republic. Among them, the quality of basalts from the Suluu-Terek deposit and basalts from the Toru-Aigyr deposit fully meets the requirements for the quality of raw materials for creating the production of basalt superthin fibers (BSF) and basalt continuous fibers (CBF). In the research we used physical and chemical analysis methods to determine the chemical and mineralogical composition of basalt. By calculating the acidity and fusibility modulus of basalt raw materials from the Kyrgyz Republic, as well as comparing them with relevant standards, their suitability for the production of basalt superthin fiber (BSF) and basalt continuous fiber (CBF) was established. The object of the study was the basalts of the Sulu-Terek deposit. Results of the study include an analysis of the chemical and mineralogical compositions of certain basalt rocks from deposits in the Kyrgyz Republic in order to assess their suitability for the production of superthin and continuous fibers. The acidity modulus and fusibility modulus of basalts of the Kyrgyz Republic were determined by the calculation method. Among them, it was revealed that the quality of basalts from the Suluu-Terek deposit and basalts from the Toru-Aigyr deposit fully meets the requirements for the quality of raw materials for the production of basalt superthin fibers (BSF) and basalt continuous fibers (CBF). Conclusion. The suitability of basalt rocks from various deposits, especially Suluu-Terek, Taldy-Bulak and Kashka-Suu, was confirmed, with recommendations for use. The results also highlight the importance of compliance with standards when selecting deposits and setting production parameters.

Бесплатно

The physical and mechanical properties of concrete with multifunctional additive

The physical and mechanical properties of concrete with multifunctional additive

Perevoshchikova A.N., Valtsifer I.V., Kondrashova N.B., Voronina N.S.

Статья научная

Introduction. It is known that concrete is the main building material, despite the introduction of new technologies. The combination of strength and durability makes this material indispensable for the construction of civil and industrial infrastructure. However, the impact of aggressive external factors on concrete structures, such as an acidic or alkaline environment, temperature fluctuations, and the presence of water at low temperatures, can lead to a significant decrease in their strength characteristics. The introduction of various additives based on organic and inorganic compounds into the composition of concrete allows for the regulation of its performance properties and protect concrete structures from the negative impact of the environment. Therefore, research works aimed at improving physical and mechanical properties and quality of concrete structures are relevant. Methods and materials. The objects of our research were concrete samples, prepared with and without the use of a multifunctional additive called “Betomix-ITH Gel”, which was developed by the researchers of the Institute of Theoretical and Applied Mechanics of the Ural Branch of the Russian Academy of Sciences (ITC UB RAS). The physical and chemical properties of the compared samples were studied in accordance with Russian and interstate regulatory documents in accredited laboratories of the Russian Federation and the Republic of Turkey. Results and discussion. As a result of the research, we have found that the introduction of the multifunctional additive "Betomix-ITH Gel" to the concrete mixture significantly increases the water resistance, frost resistance, and strength of concrete samples, compared to samples without the additive. It has been shown that Betomix-ITH Gel imparts the property of "self-healing" to concrete, with cracks up to 0.5 mm in size, and increases the resistance of steel reinforcement to corrosion. Conclusion. The research has proved experimentally the effectiveness of the Betomix-ITH Gel additive for improving the quality characteristics for concrete of various classes, which allows the use of this additive in concrete mixtures in the construction of reinforced concrete structures located in aggressive conditions.

Бесплатно

The study of CO2 impact on the formation of nanoscale structures and the physical and mechanical properties of concrete

The study of CO2 impact on the formation of nanoscale structures and the physical and mechanical properties of concrete

Zalyatdinov A.A., Kamenov R.U., Rechenko D.S.

Статья научная

Introduction. In the context of the global fight against climate change, the reduction of CO2 emissions and its utilization is a topical theme. One of the promising directions is the utilization of CO2 in construction, in particular, in concrete production. The present research investigates the effect of carbon dioxide on the formation of nanoscale structure and physical and mechanical properties of concrete mixtures. Methods and Materials. A special unit for mixing cement, sand, water and CO2 under pressure was developed for the research. The obtained concrete specimen were subjected to compressive and flexural strength tests using MATEST E161-03N automatic dual range testing press. The microstructure of the specimen was also analyzed using scanning electron microscope (SEM). Discussion. The experimental results showed that the introduction of CO2 into the concrete mixture promotes the formation of nanoscale structure, which improves its strength properties up to a certain pressure. With further increase in pressure, deterioration of these characteristics is being observed. Additional mixing time and increase in water volume also affect the strength of concrete and its microstructure. Conclusion. The use of CO2 in concrete production can significantly reduce the carbon footprint of construction materials and improve their physical and mechanical properties due to the formation of nanoscale structure. Further research and optimization of mixing parameters are necessary to create stronger and more stable concrete mixtures.

Бесплатно

Журнал