Статьи журнала - International Journal of Image, Graphics and Signal Processing

Все статьи: 1110

Successive RR Interval Analysis of PVC With Sinus Rhythm Using Fractal Dimension, Poincaré Plot and Sample Entropy Method

Successive RR Interval Analysis of PVC With Sinus Rhythm Using Fractal Dimension, Poincaré Plot and Sample Entropy Method

Md. Meganur Rhaman, A. H. M. Zadidul Karim, Md. Maksudul Hasan, Jarin Sultana

Статья научная

Premature ventricular contractions (PVC) are premature heartbeats originating from the ventricles of the heart. These heartbeats occur before the regular heartbeat. The Fractal analysis is most mathematical models produce intractable solutions. Some studies tried to apply the fractal dimension (FD) to calculate of cardiac abnormality. Based on FD change, we can identify different abnormalities present in Electrocardiogram (ECG). Present of the uses of Poincaré plot indexes and the sample entropy (SE) analyses of heart rate variability (HRV) from short term ECG recordings as a screening tool for PVC. Poincaré plot indexes and the SE measure used for analyzing variability and complexity of HRV. A clear reduction of standard deviation (SD) projections in Poincaré plot pattern observed a significant difference of SD between healthy Person and PVC subjects. Finally, a comparison shows for FD, SE and Poincaré plot parameters.

Бесплатно

Super Resolution of PET Images using Hybrid Regularization

Super Resolution of PET Images using Hybrid Regularization

Jose Mejia, Boris Mederos, Liliana Avelar-Sosa, Leticia Ortega Maynez

Статья научная

Positron emission tomography images are used to diagnose, staggering, and monitoring several diseases like cancer and Alzheimer, also, this technique is used in clinical research to help to assess the therapeutic and toxic effects of drugs. However, a main drawback of this modality is the poor spatial resolution due to limiting factors such as positron range, instrumentation limits and the allowable doses of radiotracer for administration to patients. These factors also lead to low signal to noise ratios in the images. In this paper, we proposed to increment the resolution of the image and reduce noise by implementing a super resolution scheme, we proposed to use a hybrid regularization consisting of a TV term plus a Tikhonov term to solve the problem of low resolution and heavy noise. By using an anatomical driven scheme to balance between regularization terms we attain a better resolution image with preservation of small structures like lesions and reduced noise without blurring the edges of images. Experimental results and comparisons with other methods of the state-of-the-art show that our proposed scheme produces better preservation of details without adding artifacts when the resolution factor is increased.

Бесплатно

Supervised Classification Approaches to Analyze Hyperspectral Dataset

Supervised Classification Approaches to Analyze Hyperspectral Dataset

Sahar A. El_Rahman, Wateen A. Aliady, Nada I. Alrashed

Статья научная

In this paper, Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) classification approaches were used to classify hyperspectral image of Georgia, USA, using Environment of Visualizing Images (ENVI). It is a software application used to process and analyze geospatial imagery. Spatial, spectral subset and atmospheric correction have been performed for SAM and SID algorithms. Results showed that classification accuracy using the SAM approach was 72.67%, and SID classification accuracy was 73.12%. Whereas, the accuracy of SID approach is better than SAM approach. Consequently, the two approaches (SID and SAM) have proven to be accurately converged in classification of hyperspectral image of Georgia, USA.

Бесплатно

Survey of Region-Based Text Extraction Techniques for Efficient Indexing of Image/Video Retrieval

Survey of Region-Based Text Extraction Techniques for Efficient Indexing of Image/Video Retrieval

Samabia Tehsin, Asif Masood, Sumaira Kausar

Статья научная

With the dramatic increase in multimedia data, escalating trend of internet, and amplifying use of image/video capturing devices; content based indexing and text extraction is gaining more and more importance in research community. In the last decade, many techniques for text extraction are reported in the literature. Methodologies of text extraction from images/videos is generally comprises of text detection and localization, text tracking, text segmentation and optical character recognition (OCR). This paper intends to highlight the contributions and limitations of text detection, localization and tracking phases. The problem is exigent due to variations in the font styles, size and color, text orientations, animations and backgrounds. The paper can serve as the beacon-house for the novice researchers of the text extraction community.

Бесплатно

Survey of Sparse Adaptive Filters for Acoustic Echo Cancellation

Survey of Sparse Adaptive Filters for Acoustic Echo Cancellation

Krishna Samalla, G.Mallikarjuna Rao, Ch.Stayanarayana

Статья научная

This paper reviews the existing developments of adaptive methods of sparse adaptive filters for the identification of sparse impulse response in both network and acoustic echo cancellation from the last decade. A variety of different architectures and novel training algorithms have been proposed in literature. At present most of the work in echo cancellation on using more than one method. Sparse adaptive filters take the advantage of each method and showing good improvement in the sparseness measure performance. This survey gives an overview of existing sparse adaptive filters mechanisms and discusses their advantages over the traditional adaptive filters developed for echo cancellation.

Бесплатно

Symbolic Representation of Sign Language at Sentence Level

Symbolic Representation of Sign Language at Sentence Level

Nagendraswamy H S, Chethana kumara B M, Guru D S, Naresh Y G

Статья научная

In this paper, we propose a model for recognition of sign language being used by communication impaired people in the society. A novel method of extracting features from a video sequence of signs is proposed. Key frames are selected from a given video shots of signs to reduce the computational complexity yet retaining the significant information for recognition. A set of features is extracted from each key frame to capture the trajectory of hand movements made by the signer. The same sign made by different signers and by the same signers at different instances may have variations. The concept of symbolic data particularly interval type data is used to capture such variations and to efficiently represent signs in the knowledgebase. A suitable similarity measure is explored for the purpose of matching and recognition of signs. A database of signs made by communication impaired people of Mysore region is created and extensive experiments are conducted on this database to demonstrate the performance of the proposed approach.

Бесплатно

Sympathetic Skin Response: A New Biological Signal that can be used in Diagnosis of Fibromyalgia Instead of Beck Depression Inventory

Sympathetic Skin Response: A New Biological Signal that can be used in Diagnosis of Fibromyalgia Instead of Beck Depression Inventory

Muhammed Kürşad Uçar, Mehmet Recep Bozkurt, Ferda Bozkurt

Статья научная

Fibromyalgia is a chronic pain syndrome that generally appears with prevalent muscular pain, sleep disorder and fatigue. Its diagnosis is very difficult. It is diagnosed in a long time after evaluating variety of psychological test scores along with physiological and laboratory tests. Psychological tests are thought not to be as reliable as laboratory test results since they depend on oral reports of the patients, and can differ from patient to patient. Beck depression inventory is one of the psychological test scores. In this study, a new biological signal that could be used instead of Beck depression inventory is introduced. For this purpose, sympathetic skin responses were used along with physiological and laboratory test results that were collected both from diagnosed fibromyalgia patients and healthy patients. A relationship based on classification was aimed to be established between the data and Beck depression inventory by using artificial neural networks. Three different artificial neural network training algorithm were used in the study. According to the results, physiological and laboratory test results and back depression inventory were estimated with the accuracy rate of 77.70\%. When all the data were used with Levenberg-Marquardt back propagation training algorithm, this rate went up to 90.91\%. According to these results, sympathetic skin responses can be safely used instead of Beck depression inventory when they were used along with other parameters that were used in fibromyalgia diagnosis.

Бесплатно

Synergy of Schur, Hessenberg and QR Decompositions on Face Recognition

Synergy of Schur, Hessenberg and QR Decompositions on Face Recognition

Jagadeesh H S, Suresh Babu K, K B Raja

Статья научная

Human recognition through faces has elusive challenges over a period of time. In this paper, an efficient method using three matrix decompositions for face recognition is proposed. The proposed model uses Discrete Wavelet Transform (DWT) with Extended Directional Binary codes (EDBC) in one branch. Three matrix decompositions combination with Singular Value Decomposition (SVD) is used in the other branch. Preprocessing uses Single Scale Retinex (SSR), Multi Scale Retinex (MSR) and Single scale Self Quotient (SSQ) methods. The Approximate (LL) band of DWT is used to extract one hundred EDBC features. In addition, Schur, Hessenberg and QR matrix decompositions are applied individually on pre-processed images and added. Singular Value Decomposition (SVD) is applied on the decomposition sum to yield another one hundred features. The combination EDBC and SVD features are final features. City-block or Euclidean Distance (ED) measures are used to generate the results. Performance on YALE, GTAV and ORL face datasets is better compared to other existing methods.

Бесплатно

Techniques of Glaucoma Detection From Color Fundus Images: A Review

Techniques of Glaucoma Detection From Color Fundus Images: A Review

Malaya Kumar Nath, Samarendra Dandapat

Статья научная

Glaucoma is a generic name for a group of diseases which causes progressive optic neuropathy and vision loss due to degeneration of the optic nerves. Optic nerve cells act as transducer and convert light signal entered into the eye to electrical signal for visual processing in the brain. The main risk factors of glaucoma are elevated intraocular pressure exerted by aqueous humour, family history of glaucoma (hereditary) and diabetes. It causes damages to the eye, whether intraocular pressure is high, normal or below normal. It causes the peripheral vision loss. There are different types of glaucoma. Some glaucoma occurs suddenly. So, detection of glaucoma is essential for minimizing the vision loss. Increased cup area to disc area ratio is the significant change during glaucoma. Diagnosis of glaucoma is based on measurement of intraocular pressure by tonometry, visual field examination by perimetry and measurement of cup area to disc area ratio from the color fundus images. In this paper the different signal processing techniques are discussed for detection and classification of glaucoma.

Бесплатно

Text Deblurring Using OCR Word Confidence

Text Deblurring Using OCR Word Confidence

Avinash Verma, Deepak Kumar Singh

Статья научная

Objective of this paper is to propose a new Deblurring method for motion blurred textual images. This technique is based on estimating the blur kernel or the Point Spread Function of the motion blur using Blind Deconvolution method. Motion blur is either due to the movement of the camera or the object at the time of image capture. The point spread function of the motion blur is governed by two parameters length of the motion and the angle of the motion. In this approach we have estimated point spread function for the motion blur iteratively for different values of the length and angle of motion. For every estimated PSF we perform the Deconvolution operation with the blurred image to get the non- blurred or the latent image. Latent image obtained is then feed to an Optical character recognition so that the text in that image can be recognized. Then we calculate the Average Word Confidence for the recognized text. Thus for every estimated Point Spread Function and the obtained latent image we get the value of Average Word Confidence. The Point Spread Function with the highest Average Word Confidence value is the optimal Point Spread Function which can be used to deblur the given textual image. In this method we do not have any prior information about the PSF and only single image is used as an input to the system. This method has been tested with the naturally blurred image taken manually and through the internet as well as artificially blurred image for the evaluation of the results. The implementation of the proposed algorithm has been done in MATLAB.

Бесплатно

Text Localization and Character Extraction in Natural Scene Images using Contourlet Transform and SVM Classifier

Text Localization and Character Extraction in Natural Scene Images using Contourlet Transform and SVM Classifier

Shivananda V. Seeri, J. D. Pujari, P. S. Hiremath

Статья научная

The objective of this study is to propose a new method for text region localization and character extraction in natural scene images with complex background. In this paper, a hybrid methodology is suggested which extracts multilingual text from natural scene image with cluttered backgrounds. The proposed approach involves four steps. First, potential text regions in an image are extracted based on edge features using Contourlet transform. In the second step, potential text regions are tested for text content or non-text using GLCM features and SVM classifier. In the third step, detection of multiple lines in localized text regions is done and line segmentation is performed using horizontal profiles. In the last step, each character of the segmented line is extracted using vertical profiles. The experimentation has been done using images drawn from own dataset and ICDAR dataset. The performance is measured in terms of the precision and recall. The results demonstrate the effectiveness of the proposed method, which can be used as an efficient method for text recognition in natural scene images.

Бесплатно

Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

Dhirendra Pal Singh, Ashish Khare

Статья научная

Image analysis belongs to the area of computer vision and pattern recognition. These areas are also a part of digital image processing, where researchers have a great attention in the area of content retrieval information from various types of images having complex background, low contrast background or multi-spectral background etc. These contents may be found in any form like texture data, shape, and objects. Text Region Extraction as a content from an mage is a class of problems in Digital Image Processing Applications that aims to provides necessary information which are widely used in many fields medical imaging, pattern recognition, Robotics, Artificial intelligent Transport systems etc. To extract the text data information has becomes a challenging task. Since, Text extraction are very useful for identifying and analysis the whole information about image, Therefore, In this paper, we propose a unified framework by combining morphological operations and Genetic Algorithms for extracting and analyzing the text data region which may be embedded in an image by means of variety of texts: font, size, skew angle, distortion by slant and tilt, shape of the object which texts are on, etc. We have established our proposed methods on gray level image sets and make qualitative and quantitative comparisons with other existing methods and concluded that proposed method is better than others.

Бесплатно

Texton Based Shape Features on Local Binary Pattern for Age Classification

Texton Based Shape Features on Local Binary Pattern for Age Classification

B.Eswara Reddy, P.Chandra Sekhar Reddy, V.Vijaya Kumar

Статья научная

Classification and recognition of objects is interest of many researchers. Shape is a significant feature of objects and it plays a crucial role in image classification and recognition. The present paper assumes that the features that drastically affect the adulthood classification system are the Shape features (SF) of face. Based on this, the present paper proposes a new technique of adulthood classification by extracting feature parameters of face on Integrated Texton based LBP (IT-LBP) images. The present paper evaluates LBP features on facial images. On LBP Texton Images complex shape features are evaluated on facial images for a precise age classification.LBP is a local texture operator with low computational complexity and low sensitivity to changes in illumination. Textons are considered as texture shape primitives which are located with certain placement rules. The proposed shape features represent emergent patterns showing a common property all over the image. The experimental evidence on FGnet aging database clearly indicates the significance and accuracy of the proposed classification method over the other existing methods.

Бесплатно

Texture Analysis of Remote Sensing Imagery with Clustering and Bayesian Inference

Texture Analysis of Remote Sensing Imagery with Clustering and Bayesian Inference

Jiang Li, William Rich, Donald Buhl-Brown

Статья научная

Texture is one of the most significant characteristics for retrieving visually similar patterns in remote sensing images. Traditional approaches for texture analysis are based on symbolic descriptions and statistical methods. This study proposes a new method to extract and classify texture patterns from multispectral Landsat TM satellite images using optimized clustering and probabilistic inference. After the images are preprocessed with Principal Component Analysis and decomposed into regions of interest, Gabor wavelets are computed for each region in the first component image to obtain texture feature vectors. An adapted k-means clustering algorithm with optimized number of clusters and initial starting centers generates training and testing data for Bayes Point Machine classifiers. The classifiers may run in the online mode for binary classification and the batch mode for multi-class classification. The experimental results show the effectiveness of the proposed classification method and its potentials in other image texture pattern recognition applications.

Бесплатно

Texture Classification Based on Texton Features

Texture Classification Based on Texton Features

U Ravi Babu, V Vijay Kumar, B Sujatha

Статья научная

Texture Analysis plays an important role in the interpretation, understanding and recognition of terrain, biomedical or microscopic images. To achieve high accuracy in classification the present paper proposes a new method on textons. Each texture analysis method depends upon how the selected texture features characterizes image. Whenever a new texture feature is derived it is tested whether it precisely classifies the textures. Here not only the texture features are important but also the way in which they are applied is also important and significant for a crucial, precise and accurate texture classification and analysis. The present paper proposes a new method on textons, for an efficient rotationally invariant texture classification. The proposed Texton Features (TF) evaluates the relationship between the values of neighboring pixels. The proposed classification algorithm evaluates the histogram based techniques on TF for a precise classification. The experimental results on various stone textures indicate the efficacy of the proposed method when compared to other methods.

Бесплатно

Texture Classification Using Complete Texton Matrix

Texture Classification Using Complete Texton Matrix

Y.Sowjanya Kumari, V. Vijaya Kumar, Ch. Satyanarayana

Статья научная

This paper presents a complete image feature representation, based on texton theory proposed by Julesz’s, called as a complete texton matrix (CTM)for texture image classification. The present descriptor can be viewed as an improved version of texton co-occurrence matrix (TCM) [1] and Multi-texton histogram (MTH) [2]. It is specially designed for natural image analysis and can achieve higher classification rate. TheCTM can express the spatial correlation of textons and can be considered as a generalized visual attribute descriptor. This paper initially quantized the original textures into 256 colors and computed color gradient from RGB vector space. Then the statistical information of eleven derived textons, on a 2 x 2 grid in a non-overlapped manner are computed to describe image features more precisely. To reduce the dimensionality the present paper extended the concept of present descriptor and derived a compact CTM (CCTM). The proposed CTM and CCTM methods are extensively tested on the Brodtaz, Outex and UIUC natural images. The results demonstrate the superiority of the present descriptor over the state-of-art representative schemes such as uniform LBP (ULBP), local ternary pattern (LTP), complete –LBP (CLBP), TCM and MTH.

Бесплатно

Texture Classification based on First Order Local Ternary Direction Patterns

Texture Classification based on First Order Local Ternary Direction Patterns

M. Srinivasa Rao, V.Vijaya Kumar, Mhm Krishna Prasad

Статья научная

The local binary pattern (LBP) and local ternary pattern (LTP) are basically gray scale invariant, and they encode the binary/ ternary relationship between the neighboring pixels and central pixel based on their grey level differences and derives a unique code. These traditional local patterns ignore the directional information. The proposed method encodes the relationship between the central pixel and two of its neighboring pixel located in different angles (α, β) with different directions. To estimate the directional patterns, the present paper derived variation in local direction patterns in between the two derivates of first order and derived a unique First order –Local Direction variation pattern (FO-LDVP) code. The FO-LDVP evaluated the possible direction variation pattern for central pixel by measuring the first order derivate relationship among the horizontal and vertical neighbors (0o Vs.90o; 90o Vs. 180o ; 180o Vs.270o ; 270o Vs. 0o) and derived a unique code. The performance of the proposed method is compared with LBP, LTP, LBPv, TS and CDTM using the benchmark texture databases viz. Brodtaz and MIT VisTex. The performance analysis shows the efficiency of the proposed method over the existing methods.

Бесплатно

Texture Classification based on Local Features Using Dual Neighborhood Approach

Texture Classification based on Local Features Using Dual Neighborhood Approach

M. Srinivasa Rao, V.Vijaya Kumar, MHM KrishnaPrasad

Статья научная

Texture classification and analysis are the most significant research topics in computer vision. Local binary pattern (LBP) derives distinctive features of textures. The robustness of LBP against gray-scale and monotonic variations and computational advantage have made it popular in various texture analysis applications. The histogram techniques based on LBP is complex task. Later uniform local binary pattern’s (ULBP) are derived on LBP based on bit wise transitions. The ULBP’s are rotationally invariant. The ULBP approach treated all non-uniform local binary pattern’s (NULBP) into one miscellaneous label. This paper presents a new texture classification method incorporating the properties of ULBP and grey-level co-occurrence matrix (GLCM). This paper derives ternary patterns on the ULBP and divides the 3 x 3 neighborhood in to dual neighborhood. The ternary pattern mitigates the noise problems particularly near uniform regions. The dual neighborhood reduces the range of texture unit from 0 to 6561 to 0 to 80. The GLCM features extracted from ULBP-dual texture matrix (ULBP-DTM) provide complete texture information about the image and reduce the texture unit range. Various machine learning classifiers are used for classification purpose. The performance of the proposed method is tested on Brodtaz, Outex and UIUC’s textures and compared with GLCM, texture spectrum (TS) and cross-diagonal texture matrix (CDTM) approaches.

Бесплатно

The Aggregate Homotopy Method for Multi-objective Max-min Problems

The Aggregate Homotopy Method for Multi-objective Max-min Problems

He Li, Dong Xiao-gang, Tan Jia-wei, Liu Qing-huai

Статья научная

Multi-objective programming problem was transformed into a class of simple unsmooth single-objective programming problem by Max-min ways. After smoothing with aggregate function, a new homotopy mapping was constructed. The minimal weak efficient solution of the multi-objective optimization problem was obtained by path tracking. Numerical simulation confirmed the viability of this method.

Бесплатно

The Calibration Algorithm of a 3D Color Measurement System based on the Line Feature

The Calibration Algorithm of a 3D Color Measurement System based on the Line Feature

Ganhua Li, Li Dong, Ligong Pan, Fan Henghai

Статья научная

This paper describes a novel 3 dimensional color measurement system. After 3 kinds of geometrical features are analyzed, the line features were selected. A calibration board with right-angled triangle outline was designed to improve the calibration precision. For this system, two algorithms are presented. One is the calibration algorithm between 2 dimensional laser range finder (2D LRF), while the other is for 2D LRF and the color camera. The result parameters were obtained through solving the constrain equations by the correspond data between the 2D LRF and other two sensors. The 3D color reconstruction experiments of real data prove the effectiveness and the efficient of the system and the algorithms.

Бесплатно

Журнал