Статьи журнала - International Journal of Intelligent Systems and Applications

Все статьи: 1187

Designing and Decision Making of Transport Chains between China and Germany

Designing and Decision Making of Transport Chains between China and Germany

Jian TONG, Haitao WEN, Xuemei FAN, Sebastian KUMMER

Статья научная

Optimization of an international transport chain may contribute significantly to a successful outcome in international trade. The performance of various modes of transport influences the selection of one over others. This paper analyses the transport chain between China and Germany, comparing routes and aiming to identify the best practices and chose the optimal transport mode. Through analysing secondary data, the different means of transport are presented. The SWOT analysis was selected to analyse and compare the competitive operation of the various methods of transport between China and Germany. This helps us understand what determines the selection of one mode of transport mode rather than another; the development of rail transport between China and Germany should be urged, in addition to the air and sea modes; Price, timing, level of service and relationship with forwarder are vital factors in determining the route option between China and Germany. More secondary data should be used to validate the research in the future.

Бесплатно

Detailed Study of Wine Dataset and its Optimization

Detailed Study of Wine Dataset and its Optimization

Parneeta Dhaliwal, Suyash Sharma, Lakshay Chauhan

Статья научная

The consumption of wine these days is becoming more common in social gatherings and to monitor the health of individuals it's very important to maintain the quality of the wine. For the assessment of wine quality many methods have been proposed. We have described a technique to pre-process the “Vinho Verde” wine dataset. The dataset consists of red and white wine samples. The wine dataset size has been reduced from a total of 13 attributes to 9 attributes without any loss of performance. This has been validated through various classification techniques like Random Forest Classifier, Decision tree Classifiers, K-Nearest Neighbor Classifier and Artificial Neural Network Classifier. These classifiers have been compared based on two performance metrics of accuracy and RMSE values. Among the three classifiers Random Forest tends to outperform the other two classifiers in various measures for predicting the quality of the wine.

Бесплатно

Detecting Sarcasm Text in Sentiment Analysis Using Hybrid Machine Learning Approach

Detecting Sarcasm Text in Sentiment Analysis Using Hybrid Machine Learning Approach

Neha Singh, Umesh Chandra Jaiswal, Ritu Singh

Статья научная

It's getting harder for 21st-century citizens to effectively detect sarcasm using sentiment analysis in a world full of sarcastic people and identifying sarcasm aids in understanding the unpleasant truth hidden beneath polite language. While sarcasm in text is frequently identified, very little research has been done on text sarcasm recognition in memes. This study uses a hybrid machine learning strategy to increase accuracy in identifying sarcasm text in sentiment analysis. It also compares the hybrid approach to existing approaches, like Random Forest, Logistic Regression, Naive Bayes, Stochastic Gradient Descent, and Decision Tree. The effectiveness of several methods is assessed in this study using recall, precision, and f-measure. The results showed that the suggested strategy (0.8004%) received the highest score when the prediction accuracy of several machine learning approaches was compared. The proposed hybrid approach performs much better in terms of enhancing accuracy.

Бесплатно

Detecting happiness in human face using unsupervised twin-support vector machines

Detecting happiness in human face using unsupervised twin-support vector machines

Manoj Prabhakaran Kumar, Manoj Kumar Rajagopal

Статья научная

This paper aims to finding happiness in human face with minimal feature vectors. In this system, the face detection and tracking are carried out by Constrained Local Model (CLM). Using CLM grid node, the entire and minimal feature vector displacement is obtained through extracted features. The feature vector displacements are computed in multi-classes of Twin- Support Vector Machines (TWSVM) classifier to evaluate the happiness. In training and testing phases, the following databases are used such as MMI database, Cohn-Kanade (CK), Extended-CK, Mahnob-Laughter and also Real Time data. Also, this paper compares the Supervised Support Vector Machines and Unsupervised Twin Support Vector Machines classifier with cross data-validation. Using the normalization of Min-max and Z-norm technique, the overall accuracy of finding happiness are computed as 86.29% and 83.79% respectively.

Бесплатно

Detection and Classification of Alzheimer’s Disease by Employing CNN

Detection and Classification of Alzheimer’s Disease by Employing CNN

Smt. Swaroopa Shastri, Ambresh Bhadrashetty, Supriya Kulkarni

Статья научная

Alzheimer’s illness is an ailment of mind which results in mental confusion, forgetfulness and many other mental problems. It effects physical health of a person too. When treating a patient with Alzheimer's disease, a proper diagnosis is crucial, especially into earlier phases of condition as when patients are informed of the risk of the disease, they can take preventative steps before irreparable brain damage occurs. The majority of machine detection techniques are constrained by congenital (present at birth) data, however numerous recent studies have used computers for Alzheimer's disease diagnosis. The first stages of Alzheimer's disease can be diagnosed, but illness itself cannot be predicted since prediction is only helpful before it really manifests. Alzheimer’s has high risk symptoms that effects both physical and mental health of a patient. Risks include confusion, concentration difficulties and much more, so with such symptoms it becomes important to detect this disease at its early stages. Significance of detecting this disease is the patient gets a better chance of treatment and medication. Hence our research helps to detect the disease at its early stages. Particularly when used with brain MRI scans, deep learning has emerged as a popular tool for the early identification of AD. Here we are using a 12- layer CNN that has the layers four convolutional, two pooling, two flatten, one dense and three activation functions. As CNN is well-known for pattern detection and image processing, here, accuracy of our model is 97.80%.

Бесплатно

Detection and Classification of Cross-language Code Clone Types by Filtering the Nodes of ANTLR-generated Parse Tree

Detection and Classification of Cross-language Code Clone Types by Filtering the Nodes of ANTLR-generated Parse Tree

Sanjay B. Ankali, Latha Parthiban

Статья научная

A complete and accurate cross-language clone detection tool can support software forking process that reuses the more reliable algorithms of legacy systems from one language code base to other. Cross-language clone detection also helps in building code recommendation system. This paper proposes a new technique to detect and classify cross-language clones of C and C++ programs by filtering the nodes of ANTLR-generated parse tree using a common grammar file, CPP14.g4. Parsing the input files using CPP14.g4 provides all the lexical and semantic information of input source code. Selective filtering of nodes performs serialization of two parse trees. Vector representation using term frequency inverse document frequency (TF-IDF) of the resultant tree is given as an input to cosine similarity to classify the clone types. Filtered parse tree of C and C++ increases the precision from 51% to 61%, and matching based on renaming the input/output expressions provides average precision of 91.97% and 95.37% for small scale and large scale repositories respectively. The proposed cross-language clone detection exhibits the highest precision of 95.37% in finding all types of clones (1, 2, 3 and 4) for 16,032 semantically similar clone pairs of C and CPP codes.

Бесплатно

Detection of Diabetes using Combined ML Algorithm

Detection of Diabetes using Combined ML Algorithm

Shifat Jahan Setu, Fahima Tabassum, Sarwar Jahan, Md. Imdadul Islam

Статья научная

Recently data clustering algorithm under machine learning are used in ‘real-life data’ to segregate them based on the outcome of a phenomenon. In this paper, diabetes is detected from pathological data of 768 patients using four clustering algorithms: Fuzzy C-Means (FCM), K-means clustering, Fuzzy Inference system (FIS) and Support Vector Machine (SVM). Our main objective is to make binary classification on the data table in a sense that presence or absence of diabetes of a patient. We combined the four machine learning algorithms based on entropy-based probability to enhance accuracy of detection. Before applying combining scheme, we reduce the size of variables applying multiple linear regression (MLR) on the table then logistic regression is again applied on the resultant data to keep the outlier within a narrow range. Finally, entropy based combining scheme with some modification is applied on the four ML algorithms and we got the accuracy of detection about 94% from the combining technique.

Бесплатно

Detection of Metamorphic Malware based on HMM: A Hierarchical Approach

Detection of Metamorphic Malware based on HMM: A Hierarchical Approach

Mina Gharacheh, Vali Derhami, Sattar Hashemi, Seyed Mehdi Hazrati Fard

Статья научная

Recent research have depicted that hidden Markov model (HMM) is a persuasive option for malware detection. However, some advanced metamorphic malware are able to overcome the traditional methods based on HMMs. This proposed approach provides a two-layer technique to overcome these challenges. Malware contain various sequences of opcodes some of which are more important and help detect the malware and the rest cause interference. The important sequences of opcodes are extracted by eliminating partial sequences due to the fact that partial sequences of opcodes have more similarities to benign files. In this method, the sliding window technique is used to extract the sequences. In this paper, HMMs are trained using the important sequences of opcodes that will lead to better results. In comparison to previous methods, the results demonstrate that the proposed method is more accurate in metamorphic malware detection and shows higher speed at classification.

Бесплатно

Determination of artificial neural network structure with autoregressive form of Arima and genetic algorithm to forecast monthly paddy prices in Thailand

Determination of artificial neural network structure with autoregressive form of Arima and genetic algorithm to forecast monthly paddy prices in Thailand

Ronnachai Chuentawat, Siriporn Loetyingyot

Статья научная

This research aims to study a development of a forecasting model to predict a monthly paddy price in Thailand with 2 datasets. Each of datasets is the univariate time series that is a monthly data, since Jan 1997 to Dec 2017. To generate a forecasting model, we present a forecasting model by using the Artificial Neural Network technique and determine its structure with Autoregressive form of the ARIMA model and Genetic Algorithm, it’s called AR-GA-ANN model. To generate the AR-GA-ANN model, we set 1 to 3 hidden layers for testing, determining the number of input nodes by an Autoregressive form of the ARIMA model and determine the number of neurons in hidden layer by Genetic Algorithm. Finally, we evaluate a performance of our AR-GA-ANN model by error measurement with Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) and compare errors with the ARIMA model. The result found that all of AR-GA-ANN models have lower RMSE and MAPE than the ARIMA model and the AR-GA-ANN with 1 hidden layer has lowest RMSE and MAPE in both datasets.

Бесплатно

Determination of status of family stage prosperous of Sidareja District using data mining techniques

Determination of status of family stage prosperous of Sidareja District using data mining techniques

R. Bagus Bambang Sumantri, Ema Utami

Статья научная

Family welfare is a family formed in legitimate marriage, spiritual needs and material worthy, devoted to God YME, have a harmonious relationship, harmonious and balanced with society and the environment. The government has implemented various family development programs prosperous. To support this, every year the government implements the family data collection process. Family data collection is considered an important step because it has many functions, primarily to understand the target group and to determine solutions to solve the problems of each target group. The search or discovery process of information and knowledge contained in the number of data can be done with data mining technology. Data mining is a term used to describe the discovery of knowledge in a database. In this case data mining can be used to determine the status of the prosperous family stage. The K-Nearest Neighbor (KNN) method, the Naive Bayes method and the Principal Component Analysis (PCA) are used for the proper classification of status stages. Based on the test results, the performance test of classification algorithm for case of determining status of prosperous family of Sidareja District for Naïve Bayes method using confusion matrix obtained 98.12% accuracy after added PCA feature selection to 97.73% while KNN method obtained accuracy of 98.86%, then after added PCA feature selection increased to 98.96%.

Бесплатно

Determination of structural parameters of multilayer perceptron designed to estimate parameters of technical systems

Determination of structural parameters of multilayer perceptron designed to estimate parameters of technical systems

Zhengbing Hu, Igor A. Tereykovskiy, Lyudmila O. Tereykovska, Volodymyr V. Pogorelov

Статья научная

The paper is dedicated to the problem of efficiency increasing in case of applying multilayer perceptron in context of parameters estimation for technical systems. It is shown that the increase of efficiency is possible by adaptation of structure of the multilayer perceptron to the problem specification set. It is revealed that the structure adaptation lies in the determination the following parameters: 1. The number of hidden neuron layers; 2. The number of neurons within each layer. In terms of the paper, we introduce mathematical apparatus that allows conducting the structure adaptation for minimization of the relative error of the neuro-network model generalization. A numerical experiment to demonstrate efficiency of the mathematical apparatus was developed and described in terms of the article. Further research in this sphere lies in the development of a method for calculation of optimum relationship between the number of the hidden neuron layers and the number of hidden neurons within each layer.

Бесплатно

Devanagri Handwritten Numeral Recognition using Feature Selection Approach

Devanagri Handwritten Numeral Recognition using Feature Selection Approach

Pratibha Singh, Ajay Verma, Narendra S. Chaudhari

Статья научная

In this paper novel feature selection approach is used for the recognition of Devanagri handwritten numerals. The numeral images used for the experiments in the study are obtained from standard benchmarking data-set created by CVPR (ISI)Kolkata. The recognition algorithm consists of four basic steps; pre-processing, feature generation, feature subset selection and classification. Features are generated from the boundary of characters, utilizing the direction based histogram of segmented compartment of the character image. The feature selection algorithm is utilizing the concept of information theory and is based on maximum relevance minimum redundancy based objective function. The classification results are obtained for a single neural network based classifier as well as for the committee of Neural Network based classifiers. The paper reports an improvement in recognition result when decision combiner based committee is used along with class related feature selection approach.

Бесплатно

Development a Model for Drug Interaction Prediction Based on Patient State

Development a Model for Drug Interaction Prediction Based on Patient State

Nashwan Ahmed Al-Majmar, Ayedh abdulaziz Mohsen, Mohammed Sharaf Al-Thulathi

Статья научная

Drug interactions prediction is one of the health critical issues in drug producing and use. Proposing computational model for classifying and predicting interactions of drugs with high precision is a difficult problem. Medicines are classified into two classes: overlapping, non-overlapping. It was suggested an expert system for classifying and predicting interactions of drugs using various information about drugs, interference reasons and common factors between patients and active substance that causes interference, such as: effective dose of the drug, maximum dose, times of use per day and age of patients considering that only adult category selected. The proposed model can classify and predict interactions of drugs through patient's state taking into consideration that when changing one of mentioned factors, the effect of drugs will be changed and it may lead to appear new symptoms on the patients. There is a desktop application related with the mentioned model, which helps users to know drugs and drugs families and its interactions. Proposed model will be implemented in Python using following classifiers: Logistic Regression (LR), Support Vector Machine (SVM) and Neural Network (NN), which divided data according to their similarity related to the factors of occurrence of drug interference. As these techniques showed good results, NN technology is considered one of the best techniques in giving results where MLPClassifier achieved superior performance with 97.12%.

Бесплатно

Development a New Crossover Scheme for Traveling Salesman Problem by aid of Genetic Algorithm

Development a New Crossover Scheme for Traveling Salesman Problem by aid of Genetic Algorithm

Ehtasham-ul-Haq, Abid Hussain, Ishfaq Ahmad

Статья научная

This research work provides a detailed working principle and analysis technique of multi- offspring crossover operator. The proposed approach is an extension of the basic partially- mapped crossover (PMX) based upon survival of the fittest theory. It improves the performance of the genetic algorithm (GA) for solving the well-known combinatorial optimization problem, the traveling salesman problem (TSP). This study is based on numerical experiments of the proposed with other traditional crossover operators for eighteen benchmarks TSPLIB instances. The simulation results show a considerable improvement because the proposed operator enhances the opportunity of having better offspring. Moreover, the t-test also establishes the improved significance of the proposed operator. Its preferable results not only confirm the advantages over others, but also show the long run survival of a generation having a number of offspring more than the number of parents with the help of mathematical ecology theory.

Бесплатно

Development and Performance Evaluation of Adaptive Hybrid Higher Order Neural Networks for Exchange Rate Prediction

Development and Performance Evaluation of Adaptive Hybrid Higher Order Neural Networks for Exchange Rate Prediction

Sarat Chandra Nayak

Статья научная

Higher Order Neural Networks (HONN) are characterized with fast learning abilities, stronger approximation, greater storage capacity, higher fault tolerance capability and powerful mapping of single layer trainable weights. Since higher order terms are introduced, they provide nonlinear decision boundaries, hence offering better classification capability as compared to linear neuron. Nature-inspired optimization algorithms are capable of searching better than gradient descent-based search techniques. This paper develops some hybrid models by considering four HONNs such as Pi-Sigma, Sigma-Pi, Jordan Pi-Sigma neural network and Functional link artificial neural network as the base model. The optimal parameters of these neural nets are searched by a Particle swarm optimization, and a Genetic Algorithm. The models are employed to capture the extreme volatility, nonlinearity and uncertainty associated with stock data. Performance of these hybrid models is evaluated through prediction of one-step-ahead exchange rates of some real stock market. The efficiency of the models is compared with that of a Radial basis functional neural network, a multilayer perceptron, and a multi linear regression method and established their superiority. Friedman's test and Nemenyi post-hoc test are conducted for statistical significance of the results.

Бесплатно

Development and analysis of artificial neural network models for rainfall prediction by using time-series data

Development and analysis of artificial neural network models for rainfall prediction by using time-series data

Neelam Mishra, Hemant Kumar Soni, Sanjiv Sharma, A. K. Upadhyay

Статья научная

Time Series data is large in volume, highly dimensional and continuous updating. Time series data analysis for forecasting, is one of the most important aspects of the practical usage. Accurate rainfall forecasting with the help of time series data analysis will help in evaluating drought and flooding situations in advance. In this paper, Artificial Neural Network (ANN) technique has been used to develop one-month and two-month ahead forecasting models for rainfall prediction using monthly rainfall data of Northern India. In these model, Feed Forward Neural Network (FFNN) using Back Propagation Algorithm and Levenberg- Marquardt training function has been used. The performance of both the models has been assessed based on Regression Analysis, Mean Square Error (MSE) and Magnitude of Relative Error (MRE). Proposed ANN model showed optimistic results for both the models for forecasting and found one month ahead forecasting model perform better than two months ahead forecasting model. This paper also gives some future directions for rainfall prediction and time series data analysis research.

Бесплатно

Development and implementation of the technical accident prevention subsystem for the smart home system

Development and implementation of the technical accident prevention subsystem for the smart home system

Vasyl Teslyuk, Vasyl Beregovskyi, Pavlo Denysyuk, Taras Teslyuk, Andrii Lozynskyi

Статья научная

The structure of the technical accident prevention subsystem for the smart home system has been developed in the article. The subsystem model based on Petri network, model based on neural network and physical model using the Arduino microcontroller have been realized in the development process. The subsystem research results with the use of the developed models, soft- and hardware tools are also presented.

Бесплатно

Development and simulation of adaptive traffic light controller using artificial bee colony algorithm

Development and simulation of adaptive traffic light controller using artificial bee colony algorithm

Risikat Folashade Adebiyi, Kabir Ahmad Abubilal, Muhammad Bashir Mu’azu, Busayo Hadir Adebiyi

Статья научная

This paper proposes an adaptive traffic control system that dynamically manages traffic phases and durations at cross-intersection. The developed model optimally schedules green light timing in accordance with traffic condition on each lane in order to minimize the Average Waiting Time (AWT) at the cross intersection. A MATLAB based Graphic User Interface (GUI) traffic control simulator was developed. Three scenarios of vehicular traffic control were simulated and the results presented. The results show that scenario one and two demonstrated the variation of the AWT and Performance of the developed algorithm with changes in the maximum allowable green light timing over the simulation interval. In the third scenario, an AWT of 38sec was recorded against a maximum allowable green light duration of 120sec, during which 1382 vehicles were evacuated from the intersection, leaving 22 vehicles behind. The algorithm also had a performance of 98.43% over a simulation duration of 1800sec.

Бесплатно

Development of Crop-Weather Models Using Gaussian Process Regression for the Prediction of Paddy Yield in Sri Lanka

Development of Crop-Weather Models Using Gaussian Process Regression for the Prediction of Paddy Yield in Sri Lanka

Piyal Ekanayake, Lasini Wickramasinghe, Jeevani W. Jayasinghe

Статья научная

This research introduces machine learning models using the Gaussian Process Regression (GPR) depicting the association between paddy yield and weather in Sri Lanka. All major regions in the island with most contribution to the total paddy production were considered in this research. The climatic factors of rainfall, relative humidity, minimum temperature, maximum temperature, average wind speed, evaporation, and sunshine hours were considered as input (independent) variables, while the paddy yield was the output (dependent) variable. The collinearity within each pair of independent and dependent variables was determined using Spearman’s and Pearson’s correlation coefficients. Data sets corresponding to the two main annual paddy cultivation seasons since 2009 were trained in MATLAB to develop crop-weather models. The most appropriate Kernel function was chosen from among four types of Kernels viz. Rational Quadratic, Exponential, Squared Exponential, and Matern 5/2 based on their degree of coherence in modeling. This approach exploits the full potential of GPR in developing highly accurate crop-weather models. The performance of the crop-weather models was measured by the Correlation Coefficient, Mean Absolute Percentage Error, Mean Squared Error, Root Mean Squared Error Ratio, Nash Number and the BIAS. All the GPR-based models proposed in this paper are highly accurate in terms of the aforementioned evaluation metrics. Accordingly, when the climatic data are known or projected, the paddy yield and thereby the harvest of Sri Lanka can be predicted precisely by using the proposed crop-weather models.

Бесплатно

Development of Infection Control Surveillance System for Intensive Care Unit: Data Requirements and Guidelines

Development of Infection Control Surveillance System for Intensive Care Unit: Data Requirements and Guidelines

Manal Abumelha, Awatef Hashbal, Farrukh Nadeem, Naif Aljohani

Статья научная

Surveillance systems are useful in the identification of patients that contract infections during their hospitalization period. Despite still being at infancy, electronic information control surveillance systems for Hospital Acquired Infections (HAIs) are improving and becoming more commonplace as the acceptance levels rise. There are crucial gaps in existing knowledge concerning the best ways for implementing electronic surveillance systems especially in the context of the Intensive Care Unit (ICU). To bridge this gap, the aim of this paper was to provide a comprehensive review of various electronic surveillance approaches and to highlight the requisite data components and offer guidelines. This review revealed denominator, numerator, and discrete data requirements and guidelines for the surveillance of four main ICU HAIs, including Central Line–Associated Bloodstream Infection (CLABSI), Urinary Tract Infection (UTI), Surgical Site Infections (SSIs) and Ventilator-Associated Conditions/Events (VACs/VAEs).

Бесплатно

Журнал