Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en
Статьи журнала - Nanotechnologies in Construction: A Scientific Internet-Journal
Все статьи: 555

Technology of three-dimensional laser scanning as a tool to provide safety for sport facilities
Статья научная
Introduction. Human safety during sport activities depends mostly on the technical states of sport facilities. According to current legislation, every school and higher education institution with sport facilities must meet nationwide standards for safety requirements. Sports facilities with existing codes and GOSTR are inspected by a special committee, which is required for accreditation, and which has been applied for several decades. This study offers more accurate and up-to-date methods for inspection of these sport facilities, specifically three-dimensional laser scanning. The technology of three-dimensional laser scanning is used mainly to obtain high precision and detailed measurements of any object. The authors analyzed the methods of application of three-dimensional laser scanning to assure human safety during sport activities at schools and higher educational institutions. Materials and methods. The objects analyzed were running tracks at the stadium at Kuban State Technological University. The main research method is an empirical one, namely field measurements. Scanning of racetracks was performed with the Leica ScanStation C10 from six stations. After field measurements were taken, point cloud was imported into special software to process the results of the laser scanning by the Leica Cyclone. After measurements were taken, all the critical points of the racetracks were classified by the height. According to existing standards for racetracks at athletic stadiums, the allowable value of roughness is 10 mm. Results and discussion. Classification of points revealed that the limit value for roughness of University’s racetrack was 9 mm (which meets existing safety requirements for racetracks). Thus, racetracks of Kuban State Technological University underwent the accreditation process performed by the research group from the Department of Cadaster and Geo-Engineering. Conclusion. The conclusion of the paper detertmined that, in fact, laser scanning can be applied to control safety of race tracks.
Бесплатно

The application of calcium polysulfide to increase corrosion resistance of the timbering of wells
Статья научная
The cement slurries used in well casing should ensure the tightness of the lining and protect the casing from aggressive formation fluids. At the same time, cement and water based solutions are used for cementing, with a water-cement ratio of 0.45–0.9, which predetermines their high porosity and low corrosion resistance. The technologies for increasing the durability of concrete used in con-struction practice when fixing wells are not acceptable. One of the most aggressive components of reservoir fluids is hydrogen sulfide, depending on thermodynamic conditions, can be both dissolved and gaseous. The analysis of various types of corrosion of cement stone shows the ki-netics is determined by the diffusion of aggressive ions into the stone. To reduce the porosity of the cement stone, calcium polysulfide has been proposed, which can precipitate in the pores of the stone during hardening of the cement slurries, clogging the pores, reducing their size, slowing down the diffusion rate of aggressive ions into the cement stone. In addition, calcium polysulfide adsorbing in the pores on cement hardening products will ensure the inhibition of pore space. Three methods of calcium polysulfide injection into the cement slurries were tested: into the tempering fluid (water), directly into the prepared cement slurry and dry method, through cement powder, which was subsequently subjected to disintegrator treatment. The results of the experiments showed calcium polysulfide make an impact on the rheological properties and pumpability of cement slurries, increasing the strength of the obtained stone and reducing its permeability. The stability of a stone in an acidic environment was estimated by its corrosion by one molar hydrochloric acid. The depth of stone corrosion with increasing concentration of PSS decreased from 30 to 6 mm in 21 days. When testing the cement stone under the action of dissolved hydrogen sulfide for 45 days, it was shown that the increased concentration of calcium polysulfide from 0 to 5% reduced the corrosion depth from 5.0 to 0.3 mm, depending on the technology of adding the reagent. Micrographs of cement stone samples proved that calcium polysulfide, being distributed in the pore space, blocks the surface of the cement stone, limiting the contact of aggressive ions with hardening products.
Бесплатно

Статья научная
The extrudability and firm stability are the criteria rheological characteristics of building 3D printable mixtures. This paper presents the results of experimental studies of the rheological behaviour of fresh cement pastes as matrices for 3D printable mixtures. The squeezing test, with constant plate speed, has been used for determination plasticity of cement pastes as criteria of their extrudability. As a result, the typical rheological models of the fresh cement pastes have been identified. In addition, the value of plastic yield stress was evaluated as criteria for the extrusion process. The squeezing test, with constant strain rate, has been used for determination structural and plastic strength, plastic deformations as criteria for the ability of a 3D printable mixture to hold shape during multi-layer casting. It is shown that these properties are significantly controlled by the plasticizer and viscosity modifying additives as factors of changes of disperse system «cement + water» properties. It is established that electrolytes, nanodispersed adsorption-active inorganic modifying additives increase the plasticity of the fresh cement pastes. At the same time, the nanodispersed adsorption-active inorganic modifying additives develop plastic strength as criteria of firm stability. The introduction of inorganic polymers, inert to cement, improves the structural strength of fresh cement pastes but significantly reduces their plasticity. It is shown that the management of rheological behaviour of 3D printable mixtures should be based only by the complex using of chemical addi-tives such as electrolytes, plasticizers and nanodispersed inorganic viscosity modifying additives.
Бесплатно

Статья научная
Introduction. The active development of construction technologies entails the need to improve the properties of traditional materials, including giving them specific functional characteristics such as photocatalytic activity. One of the promising methods for solving this problem is the introduction of specialized additives into standard building mixes, which include photocatalytic composite materials. Within the framework of this article, the influence of various methods of fiber activation on the surface properties of a photocatalytic composite material created on its basis is considered. Materials and research methods. The effect of pre-activation of basalt (BF), glass (GF) and glass alkali-resistant (GAF) fibers on the surface properties of photocatalytic composite materials (PCM) based on them has been studied. The activation of the fiber surface consisted in thermal (T) and chemical (AA) treatment. The research methodology included: analysis of changes in the concentration of active centers of Brensted acids on the fiber surface before and after activation of their surface, after direct deposition of titanium dioxide on the obtained samples of various types of fibers, followed by an assessment of morphological changes. Results and discussions. The following growth trend has been established for the total number of active centers for PCM: PCM(BF+Т) → PCM(GF+AA) → PCM(BF+AA) → PCM(GAF+AA) → PCM(GF) → PCM(GAF+Т) → PCM(GAF) → PCM(GF+Т) → PCM(BF). According to the results of scanning electron microscopy, it was found that PCM(GF) and PCM(GAF+T) are characterized by a more uniform distribution of titanium dioxide particles over the entire surface of the fiber, creating a film-like appearance, unlike samples of PCM(BF) and PCM(GF), as well as PCM(GAF+AA), on which titanium dioxide particles are unevenly distributed, forming growths or aggregates. The analysis showed that sol-gel deposition of titanium dioxide has a significant effect on the properties of the fiber surface, which may affect the physical and mechanical characteristics of composites and their ability to self-clean, and should be taken into account when developing new functional materials with photocatalytic properties. Conclusion. The results obtained made it possible to evaluate the effectiveness of activation of the fiber surface for subsequent use as a substrate in the composition of photocatalytic composite materials.
Бесплатно

Статья научная
Introduction. To restore and develop the Solovetsky Islands road network concrete slabs could be used. Currently, compositions with additives of industrial waste, including micro- and nanoscale, are being actively introduced to improve the performance characteristics of the road slabs. For the Arkhangelsk region, saponite-containing waste from the mining industry could be used as a material. At the same time, one of the ways to accelerate the process of gaining strength of composites is steaming. However, studies related to the effect of temperature and humidity treatment on the hardening process of a composite with a highly dispersed saponite-containing material (SCM) have not been previously studied. It is known that the process of moisture sorption with a finely dispersed additive allows controlling structure formation during concrete hardening, improving its operational characteristics. However, under conditions of high humidity, the quantitative content of tempering water, calculated based on the value of water absorption of the SСM, can significantly change and affect the process of gaining the strength of the composite. Therefore, the purpose of this research is to study the effect of temperature and humidity treatment on the strength gain of fine-grained concrete with the addition of SCM. It has been established that the accelerated method of concrete hardening has only a positive effect on the formation of a strong and dense structure. However, in the case of using highly dispersed saponite-containing material as an additive, the opposite effect (decrease in strength) associated with sorption properties and features of its structure can be observed. Methods and Materials. The SCM recovered from the recycled water was dried to constant weight and dispersed on a planetary ball mill. Particle size was determined by dynamic and electrophoretic light scattering, and specific surface area was determined by nitrogen sorption (BET theory). The strength of samples of fine-grained concrete of the control and experimental (with the addition of SCM) compositions was gained in two ways: under normal conditions and by an accelerated method using steaming. Strength tests of cube samples with dimensions of 70×70×70 mm were carried out on an automatic test press according to GOST 10180. The microstructure of the samples was examined by scanning electron microscopy. Results and Discussion. The separated, dried and ground saponite-containing material (powder) had an average particle size of 445±40 nm and a specific surface area of 50 670±10 m2/kg. In continuation of the studies, control (FGC) and test samples of fine-grained concrete (FGCscm) were made. The amount of a highly dispersed additive was introduced into the concrete mixture based on previously obtained results of kinetic studies of the water absorption process of saponite-containing material. The determination of the strength characteristics of 1-FGC and 1-FGCscm, hardening under normal conditions, was carried out on day 28. Samples of 2-FGC and 2-FGCscm, a day after sealing with water, were placed in a steaming chamber. After the expiration of the holding time, they were gradually cooled and their strength characteristics were determined. It has been established that the accelerated method of gaining strength of finegrained concrete, by steaming, has a positive effect only on control samples. For a composite with the addition of SCM, temperature and humidity treatment has the opposite effect. Thus, the dynamics of strength gain of 1-FGC and 1-FGCscm are of the same type. At the initial moment of time, an active site of strength gain is observed, but on day 7, the compressive strength of the samples of the experimental composition is 40% higher than that of the control one. At the accelerated curing method in the first two hours (isothermal heating stage), an active strength increase was observed in 2-FGC and 2-FGCscm. The subsequent curing of the control specimens has a linear dependence with a gradual increase in strength to the design strength in six hours. For 2-FGCscm, after two hours of steaming, the strength sharply begins to decrease, and after six hours – visible destruction of the concrete structure occurs. Consequently, prolonged temperature and humidity exposure of concrete with highly dispersed SSM admixture leads to a decrease in the strength characteristics of the specimens. Most likely, it is connected with moisture oversaturation of the composite structure. Therefore, in continuation of the research, electronic photographs were taken of the microstructure of concrete after three hours of holding in the steaming chamber. Thus, the microstructure of 2-FGCscm is mainly represented by spongy particles, and the number of formed needle-like (tobermorite crystals) – decreased significantly, compared to the control.
Бесплатно

Статья научная
Introduction. Nanomodification significantly enhances the performance characteristics of composite materials, particularly those based on polymers. A wide range of materials from natural to artificially created are being studied as nanoobjects. At the same time, carbon nanostructures, such as fullerenes, graphene and carbon nanotubes, are of great interest from the perspective of comprehensively improving material performance. The use of carbon nanotubes for the modification of building materials for various functional purposes, even at low (less than 1% by mass) and ultra-low (less than 0.1% by mass) concentrations, demonstrates a remarkable capability to enhance a multitude of parameters. At the same time, there are technological challenges associated with the need for compound homogenization, requiring the use of ultrasonic processing and other techniques. A new approach to applying nanomodifiers, including single-walled graphene nanotubes, emerged after the launch of a new synthesis facility by OCSiAl in 2020, as well as the introduction of these nanotubes into polymer compounds in the form of masterbatches, which are nanotube concentrates. Methods and materials. This research involved a masterbatch based on single-walled carbon nanotubes TUBALL MATRIX M201 manufactured by OCSiAl.ru LLC. The polymers were made on the basis of low-viscosity epoxy resin Etal–247 and two hardeners manufactured by ENPTs EPITAL JSC –Etal-45M and Etal-1472. Tensile testing was performed on briquet specimens according to GOST 11262-2017. The tests involved AGS-X series bursting machine with TRAPEZIUM X software at a temperature of 23±2 °C and a relative air humidity of 50±5%. The mechanical properties (tensile and deformation) of the polymers were measured in three different moisture conditions: equilibrium-moisture, dry, and moisture-saturated. Results and discussion. The research revealed variations in ultimate tensile strength, tensile elongation and elongation at break, tensile modulus as a function of SGNT concentration and the moisture content of the studied polymers (series “without conditioning”, “moisture-saturated”, and “dried”). Mathematical models were developed to assess the effect of the nanomodifier and moisture content on changes in the properties of the polymers under study. The research has identified the optimal concentrations of the nanomodifier injected for enhancing the elastic and strength characteristics of epoxy polymers. Conclusion. The research indicates that masterbatches based on TUBALL MATRIX M201 single-walled carbon nanotubes hold potential for enhancing the properties of epoxy polymers.
Бесплатно

Статья научная
Introduction. The article discusses the current state of the possibilities to improve the efficiency of construction processes by using fibre-reinforced concrete in the construction of transport and utility tunnels, as well as other critical building structures. The authors present foreign experience with widespread use of fibre-reinforced concrete in transport construction, as well as few such cases for domestic practice. The inconsistency of domestic experience with the modern state of art has been noted. The main blockers in the development of the issue are under consideration, the theoretical approach and practical application are presented. Materials and methods. The principal aspects of the current approach to the quality indicators of fibre-reinforced concrete and the classification principles of fibre-reinforced concrete based on quality criteria, which are the basis for the normalization of material characteristics, are described. The continuity of domestic and European regulatory documents is shown. Results. Illustrated examples of the possibilities of an optimization approach to the selection of structural solutions in the design of transport construction facilities used in international practice are described. Conclusion. The argumentation in favor of technology development is shown. This opens up possibilities for significant cost reduction justified by a scientific approach. In conclusion, the authors provide recommendations on the general application of the promising material in the domestic practice.
Бесплатно

The effects of low curing temperature on the properties of cement mortars containing nanosilica
Статья научная
This study presents the experimental results on the effects of curing temperature and nanosilica, on the compressive strength and absorbing properties of cement mortars. Two groups of mortars were prepared, with the first containing reference samples. The second group was modified with a nanosilica admixture by 3% of the weight of cement. The mortar specimens were cured in 20оC, 10оC and 5оC constant temperature environments. Compressive strength after 12 h, 1, 2, 7 and 28 days, water absorption and capillary porosity were evaluated on a 40×40×40 mm prism. The results confirmed that a low curing temperature delays strength development in the early days of hydration and slows down the strength growth rate of mortars, with an increase in age. The incorporation of nanosilica has a positive effect in improving the mechanical properties of cement mortars cured at low temperatures. Additionally, nanosilica contributes to decreasing the porosity of the cement matrix, so that transport properties, such as open porosity and sorptivity, improve under all curing conditions.
Бесплатно

The electrical conductivity evaluation of nanocoating on intelligent building structure elements
Статья научная
Introduction. Flexible elements made from various materials such as films, papers and geotextiles, coated with an electrically conductive coating containing carbon nanoparticles, have the potential for creating intelligent structures. To rationally choose, design, and apply electrically conducting components, it is necessary to objectively assess their behavior throughout the life cycle of these objects. Currently, there are no objective methods for evaluating such components. Methods and tools are needed that can not only evaluate initial electrical conductivity values of components but also predict dynamics of changes over time. Methods and Materials. The samples were tested under cyclic multi-axial stretching conditions. After each stretch, the strain, thickness, and electrical resistance of the samples were measured. Different materials were selected for the study, including films, nonwoven fabrics, and fabrics which differ in composition, structure, and properties. A composition with carbon nanoparticles was applied to the materials using screen printing. Results and discussion. The tests showed that the irreversible part of deformation of the sample ranged from 8% to 75%, while thickness varied from 6% to 100% depending on the structure of materials. Electrical resistance ranged from 25 Ohms to 5 KOhms, depending on test parameters and composition of coating-substrate composite. Correlation analysis confirmed strong correlation between electrical resistivity and sample deformation with correlation coefficient ranging between 0.6 and 0.78. An approximation was used to derive empirical equations that can be used to predict the reliability of flexible, electrically conductive elements under cyclic stretching conditions, which simulate operating conditions. Conclusion. A comparative analysis of test results under these conditions allowed us to recommend nonwoven fabrics and fabrics with a thickness of 0.5–0.7 mm for use as flexible electrically conducting elements. This method is recommended for objective assessment of changes in the properties of these components in intelligent building structures.
Бесплатно

The electronic edition «NANOTECHNOLOGIES IN CONSTRUCTION: A Scientific Internet-Journal»
Другой
Бесплатно

The electronic edition «Nanotechnologies in construction: A Scientific Internet-Journal»
Другой
Бесплатно

The electronic edition «Nanotechnologies in construction: A Scientific Internet-Journal»
Другой
Бесплатно