Статьи журнала - Siberian Aerospace Journal

Все статьи: 151

Gradient boosting method application to support process decisions in the electron-beam welding process

Gradient boosting method application to support process decisions in the electron-beam welding process

V. S. Tynchenko, I. A. Golovenok, V. E. Petrenko, A. V. Milov, A. V. Murygin

Статья научная

The purpose of the study is to develop a technological process mathematical model of creating permanent joints of dissimilar materials based on electron-beam welding using machine learning algorithms. Each of the connected elements is a responsible unit of the complex device, due to this fact, strict criteria are set for the quality of the welded joint. In essence, the set task is a regression task. There are many algorithms suitable for solving the regression problem. However, often the use of one algorithm does not provide sufficient accuracy of the result. One way to solve this problem is to develop a composition of algorithms to compensate for the prob-lems of each of them. One of the most effective and potent compositional algorithms is the gradient boosting al-gorithm. This algorithm use will improve the quality of the regression model. The proposed model will allow the technologist to set the process parameters and to get an assessment of the final product quality, as well as by setting input and output values. The use of assessment methods and forecasting will reduce the time and labor costs of searching, developing and adjusting the process. A description of the gradient boosting algorithm is given, as well as an analysis of the applicability of this algorithm to the model and a conclusion regarding the areas of its applicability and the reliability of the forecasts obtained by its direct use. In addition, we consider the process of direct model training based on the data obtained as part of search experiments to improve the quality of final product. The results of the applicability analysis allow us to judge the admissibility of using the proposed method for processes that have similar statistical dependencies. The application of the proposed ap-proach will make it possible to support the adoption of technological decisions by specialists in electron-beam welding during the development of the technological process and when new types of products are put into pro-duction.

Бесплатно

Heat transfer in the centrifugal force field for gas turbines elements

Heat transfer in the centrifugal force field for gas turbines elements

A. A. Zuev, A. A. Arngold, E. V. Khodenkova

Статья научная

The study of heat transfer from combustion products (CP) to the impeller and the casing of gas turbines of liquid rocket engines (LRE) is an urgent task. The solution of the flow problem, taking into account heat transfer, in rotational flows, in the flowing parts of the turbopump units (TPU) of the rocket engine, is carried out by the following methods: numerical methods; analytical approach, when solving the equations of dynamic and temperature boundary layers; as well as using empirical dependencies. The temperature parameter of the gaseous combustion products and, as a consequence, the heat exchange between the combustion products and the structural elements of the flow part, significantly affects the working and energy characteristics of the TPU LRE. When designing gas turbines of LRE, it is necessary to take into account the presence of heat exchange processes, the working fluid temperature distribution and the structural element temperatures in the cavities of the TPU LRE (since energy losses and viscosity depend on the temperatures of the working fluid, and also determine the flow parameters). The temperature distribution in the structural elements determines the performance and reliability of the unit. In the case of the use of cryogenic fuel components in the TPU LRE units the heating of the component leads to the implementation of cavitation modes and a drop in operating and energy characteristics. On the other hand, a lowered temperature of the working fluid leads to an increased viscosity of the components and, as a consequence, a decrease in the efficiency of the unit (especially when using gel-like components). When studying heat transfer in the field of centrifugal forces for elements of rocket engine gas turbines it is necessary to obtain a joint solution of the equations of dynamic and temperature boundary layers in the boundary conditions of the flow parts. This article offers a model of the distribution of dynamic and temperature boundary layers taking into account the convective component (for the case of a gaseous working fluid, i. e. Pr < 1), which is necessary for the analytical solution and determination of the heat transfer coefficient in the boundary conditions of the flow cavities of the LRE turbine. The energy equation has been analytically obtained for the boundary conditions of the temperature boundary layer, which allows integration over the surface of any shape, which is necessary in determining the thickness of the energy loss. Taking into account the integral relation, the heat transfer law of the turbulent boundary layer for the rotation cavities is written. The equations for determining the heat transfer coefficient in the form of the Stanton criterion for rectilinear uniform and rotational flows for cases of turbulent flow regimes were obtained analytically. The obtained equations for heat transfer coefficients are in good agreement with experimental data and dependences of other authors.

Бесплатно

Honeycomb fillers manufacturing technology from polymeric composite materals

Honeycomb fillers manufacturing technology from polymeric composite materals

Rudenko M. S., Mikheev A. E., Girn A. V.

Статья научная

The honeycomb filler is an integral part of the spacecraft's sandwich panel. Currently, a honeycomb filler made of aluminum alloys is used. The proposed technology makes it possible to replace the honeycomb filler material from aluminum alloys with polymer composite materials (PCM). The main difference between the developed technology for the production of honeycomb filler by the RTM method is that corrugated tape is glued during the formation of the composite material. This is a separate process in the existing methods for the production of honeycomb cores from PCM. This paper presents the results of creating a prototype of a honeycomb filler by the RTM-method, a technological process has been developed.

Бесплатно

Impact of the reinforcement technique on characteristics of composite tubular structures

Impact of the reinforcement technique on characteristics of composite tubular structures

E. A. Trifonova, A. V. Zhukov, V. V. Savitsky, V. V. Batrakov

Статья научная

Different composite elements including tubular structures are used as support structures in spacecraft optical systems. The compliance with the specified dimensional stability over a wide temperature range, in particular from –269 up to 100 °C, is important for the design of tubular structures. The promising method of manufacturing tubular structures of CM – radial braiding combined with RTM molding method is discussed in this paper. In addition, the paper describes the method of determining the optimal reinforcement technique for a braided perform which allows to reduce geometrical deflections occurring during a molding process. The impact of the reinforcement technique on the dimensional stability of tubular structures is illustrated in this paper by the example of several reinforcement techniques and manufacturing methods. The paper also contains the analysis of these techniques and the determination of the optimal one to comply with the specified characteristics.

Бесплатно

Improvement of the construction technique of substitution blocks for symmetric encryption algorithms

Improvement of the construction technique of substitution blocks for symmetric encryption algorithms

Merinov A. S., Nesterov K. A., Zhdanov O. N.

Статья научная

As it is known, block symmetric encryption algorithms are widely used to ensure information confidentiality. The resistance of encryption algorithms to the most common types of cryptanalysis is determined the quality of the blocks of substitutions. In the present work, the development of a methodology for constructing substitution blocks is being continued. In the first approach, Boolean functions with given cryptographic properties are used as component functions of substitution blocks. Previously, one of the authors proposed a reasonable methodology for the phased selection of Boolean functions for construction block. In this paper, in addition to such cryptographic properties of Boolean functions, such as: balance, possessing a strict avalanche effect, possessing correlation immunity, for the first time the nonlinearity distances of the first and second orders of Boolean functions are considered simultaneously. A study of the full set of Boolean functions of four variables was conducted. The result of it is the optimal set of Boolean functions for building substitution blocks when encrypted with the GOST 28147-89 algorithm. In the second approach, the substitution block are determined by an irreducible polynomial over the Galois field, such a scheme, used in the Rijndael encryption algorithm, is considered to be strong. The growth of calculating power of the computer necessitates an increase of the cryptographic strength of encryption algorithms. The authors have proposed substitution blocks for each round of the Rijndael scheme, based on different irreducible polynomials. A study of compositions representing a different combination of specially selected irreducible polynomials for ten rounds was carried out and the optimal set of polynomials with the best values of the encryption quality indicators by the Rijndael scheme was obtained.

Бесплатно

Influence of a constant electric field on the adsorption purification of water from iron ions

Influence of a constant electric field on the adsorption purification of water from iron ions

Shestakov I. Y., Khilyuk A. V.

Статья научная

Using electrochemical action (ECA) to treat water was first proposed in UK in 1889. At present, many methods of ECA are known (electro flotation, electro coagulation, electro osmosis, electrophoresis, etc.). In the production of rocket and space technology, galvanic technologies are used, as a result of which waste water is contaminated with metal ions. Known methods of wastewater treatment do not allow to ensure the maximum permissible concentration of metal ions in treated water, or are expensive or difficult to operate in industry. Iron ions are among the most polluting components of wastewater of most industries. So increased control and the development of effective methods of wastewater treatment are necessary. Iron affects the intensity of phytoplankton development and the qualitative composition of microflora in reservoirs. The toxicity of iron compounds in water depends on the hydrogen index of water. The alkaline environment dramatically increases the risk of fish poisoning, as in such conditions, iron hydroxides are formed, which are deposited on the gills, clog and corrode them. In addition, iron compounds bind oxygen dissolved in water, which leads to the mass death of fish and other hydrobionts. The article presents the method of conducting experiments, the methods of sorption, electrochemical and combined water treatment, including electrochemical action and adsorption. The results of studies of these methods of water purification from iron ions are presented. The dependence of the degree of purification on the electric field strength, interelectrode distance and water treatment time is revealed. With an electric field strength of 5.16 V/mm, a temperature of 20–22 °C using quartz sand as an adsorbent and a processing time of 1 minute, the concentration of iron ions decreased from 2.5 to 0.25 mg/l (at MPC = 0.3 mg/l). The proposed combined cleaning method requires inexpensive and affordable materials and is easy to operate.

Бесплатно

Influence of plasma jets of electric jet engines on spacecraft functional characteristics

Influence of plasma jets of electric jet engines on spacecraft functional characteristics

A. B. Nadiradze, S. G. Kochura, I. A. Maximov, R. E. Tikhomirov, S. V. Balashov

Статья научная

The issues of compatibility of correcting electric jet engines (EJE) and large-size transformable antennas (LTA) used in high-orbit communication satellites are considered. The paper deals with the erosive and polluting effect of EJE jets interacting with knitted mesh material (grid mesh), which is used for manufacturing LTA reflectors. The erosive effect of the EJE jets on the LTA mesh is characterized by the fact that the angles of ions incidence on the surface of the threads in the mesh are in the range from 0 to 90, i. e. such effect takes place at practically any angle of ions incidence on the mesh surface. The research includes both mathematical description of physical processes and conducting a wide series of experiments, which makes it possible to achieve the necessary reliability of the results. It has been established that the effect of plasma jets of correcting engines can lead to significant sputtering of the reflecting coating from the surface of a large-size antenna reflector. The authors obtained experimental data on the degradation of the reflection coefficient of electromagnetic radiation from the mesh, depending on the degree of plasma jet influence. It was found that the sputtering of reflecting coating from the surface of threads does not significantly affect the reflection coefficient. The sputtering of the coating at the points of threads contact is much more significant. Strong dependence of the reflection coefficient on the type of mesh weaving was also found. The mechanism of sputtering products deposition on reflecting coatings of the thermal control system radiators was investigated. The results of calculations of the sputtering coefficient and the sputtering indicatrix of the reflecting coating applied to the mesh threads were obtained. The degradation of the functional characteristics of thermoregulatory coatings (TRC) during the deposition of thin films of gold, which is one of the possible materials for a reflecting coating, was experimentally determined. Estimates of the maximum permissible level of TRC contamination were obtained. It is shown that, subject to the relevant design rules, it is possible to use EJE and LTA together in high-orbit communication satellites.

Бесплатно

Influence of the magnetic field on transport properties of holmium – manganese sulfide

Influence of the magnetic field on transport properties of holmium – manganese sulfide

M. N. Sitnikov, A. M. Kharkov, S. S. Aplesnin, O. B. Romanova

Статья научная

Holmium-manganese sulfide with giant magnetoresistance refers to new magnetic sulfide compounds of holmium and manganese that have the effect of giant magnetoresistance (i. e., with special magnetoelectric properties), which can be used as components of sensor technology, magnetic memory, and spintronics. The technology of manufacturing polycrystals HoXMn1-XS grown by crystallization from the melt of the obtained powdered sulfides with a purity not lower than 99,9 %, in glass-carbon crucibles and a quartz reactor in an argon atmosphere is presented. According to the results of x-ray diffraction analysis, HoXMn1-XS holmium-manganese sulfides have a HCC structure of the NaCl type. As the degree of cationic substitution increases, the unit cell parameter increases linearly with the concentration. No concomitant impurity phases are detected in the synthesized samples. To determine the state of the spin glass, magnetic moment measurements are conducted at several frequencies ω = 1 kHz, 10 kHz and 100 kHz. The dependence of magnetic characteristics on the frequency of measurements is found. The damping of the magnetic moment and its increase with a decrease in temperature is reviled, which is connected with the formation of metastable States. Measurements of electrical resistance without a field and in a magnetic field are conducted. Anomalies in the temperature dependence of the conductivity are found. A change in the magnetoresistance sign is detected with the increase of temperature below and above room temperature.

Бесплатно

Information-measuring system of pyrometric type for small-sized unmanned aircraft

Information-measuring system of pyrometric type for small-sized unmanned aircraft

Akzigitov A. R., Pisarev N. S., Statsenko N. I., Neverov U. A., Akzigitov R. A.

Статья научная

A new trend of science and technology is now rapidly developing both in Russia and abroad – the development of miniature unmanned aerial vehicles. The key system of on-board control equipment (avionics) of an unmanned aerial vehicle (UAV) is the orientation system for determining UAV attitude relative to reference system. In small-size UAV, we can meet the application of strapdown attitude reference systems, magnetometric, pyrometric, video systems, etc. Rapid development of mini- and micro-UAVs requires the development of information-measuring systems (operating on different physical principles) in order to determine UAV attitude parameters in flight. With UAV mass and wingspan reduction, there are growing requirements for these systems, concerning the accuracy of positioning parameters and more compact dimensions. Manufacturing of most information-measuring and control systems of manned aircraft and heavy UAVs rely on traditionally used gyroscopes and accelerometers. They are complex fine-mechanics instruments of considerable power consumption, rather large size, weight and high cost. A significant improvement of the accuracy in UAV angular coordinates determination is achieved by integrating orientation systems of various types. The use of GPS / GLONASS signals also improves the accuracy and reliability of determining UAV angular coordinates and supplies the additional function of measuring its geographical coordinates.

Бесплатно

Inter-satellite optical communication link

Inter-satellite optical communication link

Aleksandrov A. V., Vasilenko A. V., Korolev D. O.

Статья научная

A two-level system of data transmission in the optical range is considered between a low-orbit spacecraft located in a sun-synchronous orbit and a repeater satellite located in a geostationary orbit. This topic is rather relevant due to the fact that the rapid development of remote sensing satellites resulted in the increase of the amount of transmitted information, which in consequence introduced new requirements for communication systems. The increase of data transmission rate and severization of requirements for communication systems contributed to the development of one of the most promising areas of space communications, based on the information transmission via a laser channel, due to a high energy concentration and a much higher carrier frequency. The prospects for the application of optical communication systems are designated by lower power consumption, dimensional specifications and the mass of the transceiver equipment of the optical range (compared to radiofrequency range systems). The article describes the solution of application of optical communication link between a low-orbit spacecraft and a repeater satellite. The main factors that contribute to the attenuation in the process of signal propagation along the route are presented and analyzed. A model of a communication channel between a low-orbit spacecraft and a repeater satellite is provided for a visual image. Two different approaches of mutual guidance and tracking of laser terminals are described for using beacons and without ones. EDRS foreign system is considered as an analogue. The estimation of the main parameters of the communication link is given. The communication system considered in the article will allow for greater carrier capacity of the data transmission in the optical range between the low-orbit spacecraft and repeater satellite. The application of this system will allow solving problems, including in the interests of any departments and structures of the Ministry of Defense of the Russian Federation, for which the rate of obtaining information is one of the basic requirements for a satellite communication system. The tasks of precise targeting of receiving and transmitting devices arising as a result of narrow beam patterns can be solved with current technical means.

Бесплатно

Interaction of magnetic and dielectric subsystes in a bismuth nodymic ferrite-granate

Interaction of magnetic and dielectric subsystes in a bismuth nodymic ferrite-granate

Masyugin A. N., Fisenko O. B., Rybina U. I., Filippson G. Yu.

Статья научная

Bismuth-substituted ferrite garnets possess magneto-optical (MO) properties and are used as spatial light modulators and indicators. The paper studies the influence of magnetic and electric fields on the structural characteristics of thin epitaxial films of bismuth-neodymium ferrite garnet (Bi: NIG) deposited on glass and gallium gadolinium garnet (GGG) substrates. Dynamic properties of polarization, relaxation in a magnetic and electric field are considered, which is an important task for getting a deep insight into the mechanisms of electromagnetic phenomena in solids. Dependence of the magnetostriction coefficient on the magnetic field and dependence of a relative change in the length of the film on the electric field at different temperatures are obtained. A change in the sign of magnetostriction constants with respect to temperature was found. The electric polarization in a periodically applied electric field of 400 V / cm with a frequency of 10 MHz is determined for various magnetic field orientations of 12 kOe and in the absence of a magnetic field. Anisotropy of polarization in a magnetic field and a functional dependence of the polarization relaxation on time are found. These materials can be used as sensors of the magnetic field in a spacecraft.

Бесплатно

Interpretation of ant algorithm for solving the problem of the technical impact program calendar planning

Interpretation of ant algorithm for solving the problem of the technical impact program calendar planning

A. S. Lifar

Статья научная

Many strategically important sectors of the domestic industry are at the stage of transition to an investment approach to asset management. One of these industries is hydropower, where the current maintenance planning system needs new methods to deliver more efficient results. In general, the planning system for the main equipment (technical impact system) maintenance and repair can be formulated as a scheduling problem. The ant algorithm is of great interest from the point of view of solving the scheduling technical impact problem. Based on the specifics of planning, implementation and factors affecting the maintenance process, a modification of the ant algorithm is proposed. The mathematical description is a methodology for calculating parameters, basic elements of the graph, optimization criteria and constraints. A preparatory stage was also introduced into the solution algorithm, which determines the initial state of the equipment at the vertex K0. The functional model of the technical impact planning process presented in the article can be used to develop a software package within the framework of an innovative approach to asset management for hydropower companies.

Бесплатно

Investigation of the metrological characteristics of the PulsESPI system applied to the precision inspection of thermal deformations

Investigation of the metrological characteristics of the PulsESPI system applied to the precision inspection of thermal deformations

Zavyalov P. S., Kravchenko M. S., Urzhumov V. V., Kuklin V. A., Mikhalkin V. M.

Статья научная

High-precision and reliable inspection of thermal deformations is necessary in terms of simulating the effects of space in the ground-based experimental processing of antennas and mirror systems of spacecrafts. Inspection of objects up to 1.5 m in size is considered in the paper. In practice, it can reach sizes up to 10 m. Requirements for thermal deformation are in range of 10–200 micrometers. The deformable surface is rough (Ra » λoptic). The measurement error, however, should not exceed ± 1 micron. The electronic speckle pattern interferometry (ESPI) method is the most suitable for solving this problem. The method allows to inspection objects with a randomly inhomogeneous surface. The method assumes that it is necessary to calculate the wave phase values from the recorded picture by the digital matrix. It is the phase that contains information about the deformation, and the spatial phase shift method is used to calculate it. One of the measuring systems based on this method is the measuring system PulsESPI (Carl Zeiss Optotechnik GmbH production, Germany). It has a high sensitivity which is about 50 nm. However, this measuring system is designed for single measurements. In this regard, an additional software module for processing and visualization the result of a series of several hundred measurements has been developed. The experimental test bench with a test object has been developed to research the metrological characteristics of the PulsESPI system in accordance with thermal deformations measurements (multiple determinations). The PulsESPI system and the Renishaw XL-80 interferometer introduced into register of measuring instrumentation of Russian Federation were located on different sides of the object 1.5 m in size. As a result of measuring the surface displacement measured by the Renishaw XL-80 interferometer and its corresponding point from the PulsESPI system deformation map are compared. Three types of tests were carried out at the developed bench. The root-mean-square deviation of single measurements was no more than ± 0.2 μm. Error was no more than ± 1 μm when the series of measurements was conducted in which a total strain of 200 μm was obtained. The results obtained suggest the possibility of using this system for high-precision inspection of thermal deformations of large objects.

Бесплатно

Laboratory separator of bulk materials

Laboratory separator of bulk materials

E. G. Danilenko, S. V. Telegin

Статья научная

New materials for spacecraft radiation screens engineering require a fine classification of powder materials by particle size. The article concerns the construction of powder materials laboratory separator. This type of material separation is related to gravity methods. The Moseley laboratory separator serves as the prototype of the construction with table longitudinal shaking and diametrical vibrations by means of buffers during the separation process. The unbalanced oscillator yields deck separation surface harmonic vibrations in all directions. The unbalanced oscillator DC motor voltage control gradually alters the vibration frequency and supports finer separation of the material. A power pipe enables to conduct perpetual separation process. In prototype, in contrast, up to 100 g weight is processed for up to 5 minutes. To improve the materials fine and small classes separation efficiency, riffles are made on the separation surface, which determine the places of concentration of material particles. As a result of the conducted researches for elimination of the secondary circulation flows, a system of diametrical reefing is worked out: the riffle is approximately equal to the maximum particle size of the separated material and is equal to 0.2 mm in this construction; the distance between riffles is equal to 50 mm, the tilt angle is 80 degrees relative to the deck longitudinal side. The particle motion depends on the inclination angle of the separation surface. Large particles move upwards at angles of up to 5 degrees, and downwards at angles higher than 5 degrees. Vibration frequency and amplitude alteration, as well as adjusting the inclination angle of separation surface enables to move and adjust the speed of different properties and sizes of test material. The laboratory separator work is based on the physical effects, which enable to vary the location of the power pipe. This fact allows the construction to be adapted to a variety of specific conditions and expands the construction sphere. The separator construction is simple for production and operation, and can be quickly reconfigured if necessary. The separator portability allows it to be transported.

Бесплатно

Library of mathematical functions with parallelism at the operational level in the Pythagor language

Library of mathematical functions with parallelism at the operational level in the Pythagor language

Udalova J. V., Kuzmin D. A.

Статья научная

At present, developed tools and libraries have been designed for imperative and functional programming languages that provide parallelism through processes or threads. There are other alternative approaches to the organization of parallel computing, one of which is implemented in Pythagor – the language of functional-streaming parallel programming, and involves parallelism at the level of operations. The tools of the Pythagor programming language are actively developing, and the repository of predefined functions is expanding. Many mathematical functions have been designed to provide a developer with no less functionality than the math library math.h of the C programming language. A large part of the mathematical functions have been implemented using the Maclaurin’s series. It is both used as an approach of faster and less accurate calculations, in which a predetermined number of elements of the series is calculated without cycles and recursions with the substitution of pre-calculated coefficients in the function code, and as an approach of less rapid and more accurate calculations, in which the elements of the series are calculated dynamically until the desired accuracy is achieved. The development of a library of mathematical functions of a programming language is an applied algorithmic task already implemented in one way or another for a number of existing programming languages. But in many languages, the implementation of algorithms for mathematical functions is hidden from the user, while modern tools of the Pythagor language support an open repository of functions. Additional interest is the possibility of parallelism at the level of operations in the calculation of mathematical formulas in the Pythagor language.

Бесплатно

Managing a group of objects as a task of system analysis

Managing a group of objects as a task of system analysis

M. E. Kornet, A. V. Medvedev, D. I. Yareshchenko

Статья научная

In this paper, we consider the general statement of the problem of identification and management of a group of objects. A group refers to several objects combined for the manufacture of a product. The main feature is that when managing such systems, it is necessary to change the setting actions for each object. This is due to the fact that today the technological regulations in many cases are wider than they should be for good operating. This is a consequence of the fact that the current production culture (this, in particular, has been shown by the experience of processing data from the technological process for the production of transis-tors at Svetlana) is rather low, which leads to some organizational problems. It is clear that it is necessary to have certain models of objects that naturally differ from each other and can be considered under conditions of both parametric and nonparametric uncertainty. Moreover, there may be cases when an object is considered simultaneously under conditions of both parametric and nonparametric uncertainty over various channels. Now, regarding the delay, due to the fact that the measurement of some variables is carried out in a significantly long-er time interval than the object constant, it is necessary to distinguish the time of measuring technological vari-ables and, in fact, the delay typical to the process itself, taking into account the difference between the channels. This leads to the fact that dynamic processes are essentially forced to be considered as inertialess with delay. Another significant feature is that the components of the output variables are stochastically dependent in ad-vance in an unknown manner. The use of correlation or dispersion relations in this case does not lead to success. A special analysis of T-processes and the ability to simulate such processes are required. In particular, this is one of the tasks of this article. It contains: T-processes, T-models and the corresponding heterogeneous control algorithms. The process of hydrodeparaffinization of diesel fuel is considered according to available data, which can be said a priori that they are incomplete, that is they do not reflect the complex behavior of the pro-cess. From here it follows that these data require replenishment, which today is not carried out for various rea-sons. Thus, the process of hydrodewaxing can be taken to the T-process. Modeling a multidimensional system based on real data has shown that in this problem the presetting effect for different objects should be different. The exception is only the setting actions for the entire complex or group of objects. Modeling was carried out on the basis of T-models considered in the article. It has already been not-ed that these models should not be taken as complete, giving an idea of reality. They will be subject to algorith-mic refinement during further research. The decision is made by the researcher. At this stage that an assessment is given that, under the circumstances, the resulting models and control algorithms can be adopted for use in a production environment. An attempt to use the existing theory of identification and control for the process of hydrodewaxing will inevitably lead to a significant degradation and increase in the cost of a computer system for operating the quality of this process.

Бесплатно

Mathematical model of a linear electrodynamic engine operation on impact with account for elastic deformation of the hardened surface

Mathematical model of a linear electrodynamic engine operation on impact with account for elastic deformation of the hardened surface

Shvaleva N. A., Fadeev A. A., Eresko T. T.

Статья научная

Operational characteristics of contacting elements of cars and mechanisms are by far defined by a layer quality indicators at the surfaces of contact. One of the ways of increasing details durability, including missile and space equipment details, is the superficial plastic deformation (SPD). In the article aspects of dynamic ways of hardening from the position of the wave theory of blow are considered. The construction of a shock stand on the basis of a linear electrodynamic drive with a size of 60 mm, operating in a shock-pulse mode, as well as a well-known mathematical model of the workflow – the movement of the armature with the tool at the moment of striking the surface. This model does not fully describe the operation process since the mass of the striker taken into account equaled 1 kg, which does not characterize the process of the impact tool, the purpose of which is the object deformation (for example, work hardening with the aim of surface material sealing or breakdown of the hole in it, or applying license plates markers). The mathematical model that describes the movement of the armature with the tool, taking into account the elastic deformation of the hardened surface was obtained. In the course of the performed calculation, the magnitude of the elastic deformation of the hardened surface was calculated from the dynamic component of the force impulse applied to it through the indenter (the tip of the impact tool). The layout of the shock stand with the equipment used, are offered. Experiments on the signal recording with various arrangements of piezoelectric transducers on the anvil – the hardened surface (diagrams of the sensors location are given) were carried out.

Бесплатно

Mathematical model of reliability of information processing computer appliances for real-time control systems

Mathematical model of reliability of information processing computer appliances for real-time control systems

A. V. Aab, P. V. Galushin, A. V. Popova, V. A. Terskov

Статья научная

One of the main characteristics of computer appliances for processing real-time information is reliability. The reliability of software is understood as the property of this software to perform specified functions, maintaining its characteristics within the established limits under certain operating conditions. Software reliability is determined by its reliability and recoverability. Reliability of software is a property to maintain its performance when using it for processing information in the information system. The reliability of the software is estimated by the probability of its operation without failures under certain environmental conditions during a given observation period. The development of real-time systems requires a large amount of resources for design and testing. One of the solutions to this problem is mathematical modeling of computer appliances. This allows more flexible design of real-time systems with the specified reliability, taking into account the limitations on price and development time, and also opens the possibility of more flexible optimization of computer appliances for real-time control systems. To develop a mathematical model of the reliability of computer appliance for real-time systems, it is necessary to take into account the provision of a given level of reliability, with reasonable development costs. There are many methods for improving software reliability, but the most promising and effective methods are redundancy, which is achieved using N-version programming. To increase the reliability of the hardware of the computer appliance, it is also necessary to use redundancy and redundancy, which includes multiprocessor and provision of different buses and independent RAM. This paper discusses existing approaches to improving the reliability of hardware and software, proposes a model of reliability of a computer appliance, which is understood as the product of the probability of failure-free operation of hardware and the probability of error-free operation of software. In addition, new formulas are proposed for the steady state probabilities of the hardware states of a multiprocessor computer appliance with heterogeneous processors, which give the same result as the existing ones, but require fewer computations. The paper concludes with a question about the possibility of optimizing the reliability of computer appliances based on the developed model, and indicates optimization methods that can be used to solve this problem.

Бесплатно

Mathematical model of the mirror system of the Millimetron observatory and a description of the method of pre-measurement of the telescope within this model

Mathematical model of the mirror system of the Millimetron observatory and a description of the method of pre-measurement of the telescope within this model

Makarov S. N., Verhoglyad A. G., Stupak M. F., Ovchinnikov D. A., Oberemok J. A.

Статья научная

A mirror geometry control system for the Millimetron Observatory is being created to work as part of the on-board complex of scientific equipment. The system is designed to monitor the quality of the space telescope’s mirror system and use the data received as feedback signals for pre-setting and tuning the telescope’s optical system in outer space. The goal of the system is estimation of the multidimensional vector of unknown parameters of the telescope’s mirror system by indirect measurements obtained as a result of the measurement of the telescope by 3D scanning. A mathematical model has been created, numerically describing the process of pre-measurement of the mirror system of the Millimetron Observatory using optical control marks on the surface of the mirror system. The linear mathematical model allows to link the actual indirect measurements of the mirror system with the unknown biases of its parameters, determining the shape of the telescope. A formula has been developed for the optimal reverse problem solver in the process of pre-measurement of the mirror system. The method of measuring the components of the telescope as part of its pre-setting is described. The measurement of control marks is based on a onboard 3D scanner embedded in the design of the mirror system control system. The error analysis was carried out using the optimal solver, and a covariance matrix was obtained for the error vector of estimated parameter.

Бесплатно

Mathematical modeling of the technological process of improving the quality of polymeric products of machine-building purposes

Mathematical modeling of the technological process of improving the quality of polymeric products of machine-building purposes

Larchenko A. G, Filippenko N. G., Livshits A. V.

Статья научная

In this scientific work, a method of controlling high-frequency products from polymeric composite materials is considered. The authors of the work present the rationale for choosing a method of high-frequency diagnostics as the most suitable for non-destructive testing of products from polymeric materials of machine-building and rocket-space purposes. In the presented article, the primary task of creating and studying a mathematical model of the effect of highfrequency radiation on a polymer product, including those with a “metallic inclusion” defect, has been stated and solved. In addition, the work presents the calculations of diagnostic parameters using the mathematical model developed during the study. The calculation of the dynamics of heating the product and the temperature distribution during the control process is presented. The results of the calculation of specific power are described, the dependence of the instantaneous power consumption on the warm-up time is found. In the study based on a mathematical model, the Aleo- Diagnost software package was developed and registered, which is directly intended to ensure the functioning of the diagnostic devices and the investigation of the monitoring process. In addition, the developed complex allows solving a number of such practical problems as the calculation of the operating voltage depending on the geometrical parameters of the product and the determination of the value of energy consumed for monitoring the product for a specified period of time. This stage was necessary, as the consumed energy is the main output parameter of the diagnosis. In addition, the value of energy consumed is taken as the basis for the organization of the process of non-destructive testing in the automated mode. The solution of the tasks in this work has significantly reduced the cost of preparation of diagnostic operations, as well as improve the quality of control of products on an industrial scale at the stages of manufacture, operation and during repair work. The article also presents practical results, conclusions.

Бесплатно

Журнал