Статьи журнала - International Journal of Intelligent Systems and Applications
Все статьи: 1159
Translation movement stability control of quad tiltrotor using LQR and LQG
Статья научная
Quadrotor as one type of UAV (Unmanned Aerial Vehicle) is a system that underactuated. It means that the system has a signal control amount is lower than the degrees of freedom or DOF (Degree Of Freedom). This condition causes the quadrotor have limited mobility. If quadrotor is made to have 6 DOF or more (overactuated system), the motion control system to optimise the flight will be different from before. We need to develop overactuated quadrotor control. Quadtiltrotor as the development of quadrotor has some control signal over its DOF. So we call it as an overactuated system. Based on the type of manoeuvre to do, the transition process when the quad tiltrotor performs a translational motion using the tilting rotor need special treatment. The tilt angle change is intended that the quad tiltrotor can perform translational motion while still maintaining its orientation angle near 0°. This orientation angle can change during the undesirable rotational movement as the effect of the transition process. If additional rotational movements cannot be damped, the quad tiltrotor can experience multi overshoot, steady-state error, or even fall. Because of this matter, we need to develop flight control system to handle it. The flight control system of quad tiltrotor can be designed using a model of the system. Models can be created using quad tiltrotor dynamics by the Newton-Euler approach. Then the model is simulated along with the control system using the method of control. Several control methods can be utilised in a quad tiltrotor flight systems. However, with the implementation of LQG control method and Integrator, optimal translational control of the quad tiltrotor can be achieved.
Бесплатно
Trust Based Resource Selection in Cloud Computing Using Hybrid Algorithm
Статья научная
Cloud computing is experiencing rapid advancement in academia and industry. This technology offers distributed, virtualized and elastic resources as utilities for end users and can support full recognition of “computing as a utility” in the future. Scheduling distributes resources among parties which simultaneously and asynchronously seek it. Scheduling algorithms are meant for scheduling and they reduce resource starvation ensuring fairness among those using resources. Most Task-scheduling cloud computing procedures consider task resource requirements for CPU and memory, and not bandwidth. This study suggests optimizing scheduling with BAT-Harmony search hybrid algorithm.
Бесплатно
Two Approaches Based on Genetic Algorithm to Generate Short Iris Codes
Статья научная
This paper has the following contributions in iris recognition compass: first, novel parameters selection for Gabor filters to extract the iris features. Second, due to iris textures randomness and assigning the Gabor parameters by pre-knowledgeable values, traditionally, a large Gabor filter bank has been used to prevent losing the discriminative information. It leads to perform extracting and matching the features heavily and on the other hand, the generated feature vectors are lengthened as required for extra storage space. We have proposed and compared two different approaches based on Genetic Algorithm to reduce the system complexity: optimizing the Gabor parameters and feature selection. Third, proposing a novel encoding strategy based on the texture variations to generate compact iris codes. The experimental results show that generated iris codes by optimizing the Gabor parameters approach is more distinctive and compact than ones based on feature selection approach.
Бесплатно
UWB Cooperatif Radar for Localization and Communication Dedicated to Guided Transport
Статья научная
Wireless technology for communication and localization in train applications are widely used. Ultra wide band appears as a very suitable technology for this kind of application, due to its large bandwidth, also to its good resistance to the interference and to multipath. In this paper, a new system dedicated to railway transport, based on UWB technology is presented. The originality of this study is combination of the two main functionalities, localization and communication providing a high data rate. The sensor, in order to detect the position of vehicles, uses a matched digital correlation receiver. To allow a multi user access and to combine the two functionalities, two original multiplexing techniques called SSS2 (Sequential Spreading Spectrum technique) and CPM (Code Position Modulation) are performed, in addition to other parameters like used waveform and orthogonal codes.
Бесплатно
Статья научная
This paper has proposed new materials based conventional arrayed waveguide grating (AWG) devices such as pure silica glass (SiO2), Lithium niobate (LiNbO3) , and gallium aluminum arsenide (Ga(1-x)Al(x)As) materials for multiplexing and demultiplexing applications in interval of 1.45 μm to 1.65 μm wavelength band, which including the short, conventional, long, and ultra long wavelength band. Moreover we have taken into account a comparison between these new materials within operating design parameters of conventional AWG devices such as diffraction order, length difference of adjacent waveguides, focal path length, free spectral range or region, maximum number of input/output wavelength channels, and maximum number of arrayed waveguides. As well as we have employed these materials based AWG to include Multi band applications under the effect of ambient temperature variations.
Бесплатно
Uncovering Brain Chaos with Hypergraph-Based Framework
Статья научная
The scientist has proven that the birth of neurons in a region of adult rat brain migrates from their birthplace to other parts of the brain. The same process also happens in adult humans. There was no efficient visualization tool to view the functions and structures of the human brain. In this paper, we focus to design a framework to understand more about Alzheimer’s disease and its process of neurons in the human brain. This framework named a hypergraph-based neuron reconstruction framework. It helped to map, the birth and death of neurons with the construction and reconstruction of the hypergraph. This framework also recognizes the structural changes during the life cycle of the neuron. Its performance was evaluated quantitatively with small-world networks and robust connectivity measures.
Бесплатно
Urinary System Diseases Diagnosis Using Machine Learning Techniques
Статья научная
The urinary system is the organ system responsible for the production, storage and elimination of urine. This system includes kidneys, bladder, ureters and urethra. It represents the major system which filters the blood and any imbalance of this organ can increases the rate of being infected with diseases. The aim of this paper is to evaluate the performance of different variants of Support Vector Machines and k-Nearest Neighbor with different distances and try to achieve a satisfactory rate of diagnosis (infected or non-infected urinary system). We consider both diseases that affect the urinary system: inflammation of urinary bladder and nephritis of renal pelvis origin. Our experimentation will be conducted on the database “Acute Inflammations Data Set” obtained from UCI Machine Learning Repository. We use the following measures to evaluate the results: classification accuracy rate, classification time, sensitivity, specificity, positive and negative predictive values.
Бесплатно
Статья научная
For more relevant informational retrieval and matching of user request with metadata about biomedical informational recourses it is necessary to formulize the user knowledge about this subject domain. We propose to use the ontologies and associated with them thesauri of the appropriate subject domains for representation of biomedicine knowledge. The algorithms of formation and normalization of the multilinguistic thesauruses, and also methods of their comparison are given in this work.
Бесплатно
Using Artificial Immune Recognition Systems in Order to Detect Early Breast Cancer
Статья научная
In this work, a decision support system for early breast cancer detection is presented. In hard to diagnose cases, different examinations (i.e. mammography, ultrasonography and magnetic resonance imaging) provide contradictory findings and patient is guided to biopsy for definite results. The proposed method employs a Correlation Feature Selection procedure and an Artificial Immune Recognition System (AIRS) and is evaluated using real data collected from 53 subjects with contradictory diagnoses. Comparative results with commonly used artificial intelligence classifiers verify the suitability of the AIRS classifier. The application of such an approach can reduce the number of unnecessary biopsies.
Бесплатно
Using Description Logics to specify a Document Synthesis System
Статья научная
This paper deals with an automatic document’s synthesis system. Our approach is based on the prior formal description of the semantics of the main elements (document, reader and his request) in the synthesis system. In this approach, semantic capture is based on ontology definition that is specified formally using Description Logics (DL). The DL inference techniques associated to production rules are then used to compute a document synthesis. Moreover, DL inference techniques are used to reason about each component.
Бесплатно
Using Fuzzy Models and Time Series Analysis to Predict Water Quality
Статья научная
Water quality prediction is very important for both water resource scheduling and management. Simple linear regression analysis and artificial neural network models cannot accurately forecast water quality because of complicated linear and nonlinear relationships in the water quality dataset. An adaptive neuro-fuzzy inference system (ANFIS) that can integrate linear and nonlinear relationships has been proposed to address the problem. However, the ANFIS model can only work in scenarios where input and target parameters have strong correlations. In this paper, a fuzzy model integrated with a time series data analysis method is proposed to address the water quality prediction problem when the correlation between the input and target parameters is weak. The water quality datasets collected from the Las Vegas Wash between the years 2005 and 2010, and the Boulder Basin, Nevada-Arizona from the years 2011 to 2016 are used to test the proposed model. The prediction accuracy of the proposed model is measured by three different statistical indices: mean average percentage error, root mean square error, and coefficient of determination. The experimental results have proven that the ANFIS model combined with a time series analysis method achieves the best prediction accuracy for predicting electrical conductivity and total dissolved solids in the Las Vegas Wash, with the testing value of coefficient of determination reaching 0.999 and 0.997, respectively. The fuzzy time series analysis has the best performance for dissolved oxygen and electrical conductivity prediction in the Boulder Basin, and dissolved oxygen prediction in the Las Vegas Wash, with testing value of coefficients of determination equal to 0.990, 90975, and 0.960, respectively.
Бесплатно
Using Heuristic-based Search for Zinc Models
Статья научная
The Zinc modelling language provides a rich set of constraints, data structures and expressions to support high-level modelling. Zinc is the only modelling language that supports all solving techniques: constraint programming, mathematical methods, and local search. By providing search patterns, it allows users to implement their search methods in a declarative way. There are currently three search patterns implemented in Zinc: backtracking search, branch and bound search, and local search. In this paper we explain how Zinc efficiently implements user-defined local search algorithms.
Бесплатно
Статья научная
The current Learning Management Systems used in e-learning lack intelligent mechanisms which can be used by an instructor to group learners during an online group task based on the learners' collaboration competence level. In this paper, we discuss a novel approach for grouping students in an online learning group task based on individual learners' collaboration competence level. We demonstrate how it can be applied in a Learning Management System such as Moodle using forum data. To create the collaboration competence levels, two machine learning algorithms for clustering namely Skmeans and Expectation Maximization (EM) were applied to cluster data and generate clusters based on learner's collaboration competence. We develop an intelligent grouping algorithm which utilizes these machine learning generated clusters to form heterogeneous groups. These groups are automatically made available to the instructor who can proceed to assign them to group tasks. This approach has the advantage of dynamically changing the group membership based on learners' collaboration competence level.
Бесплатно
Using Rough Set Theory for Reasoning on Vague Ontologies
Статья научная
Web ontologies can contain vague concepts, which means the knowledge about them is imprecise and then query answering will not possible due to the open world assumption. A concept description can be very exact (crisp concept) or exact (fuzzy concept) if its knowledge is complete, otherwise it is inexact (vague concept) if its knowledge is incomplete. In this paper, we propose a method based on the rough set theory for reasoning on vague ontologies. With this method, the detection of vague concepts will insert into the original ontology new rough vague concepts where their description is defined on approximation spaces to be used by extended Tableau algorithm for automatic reasoning. A prototype of Tableau's extended algorithm is developed and tested on examples where encouraging results are given by this method to demonstrate that unlike other methods, it is possible to answer queries even in the presence of incomplete information.
Бесплатно
Using the Euler-Maruyama Method for Finding a Solution to Stochastic Financial Problems
Статья научная
The purpose of this paper is to survey stochastic differential equations and Euler-Maruyama method for approximating the solution to these equations in financial problems. It is not possible to get explicit solution and analytically answer for many of stochastic differential equations, but in the case of linear stochastic differential equations it may be possible to get an explicit answer. We can approximate the solution with standard numerical methods, such as Euler-Maruyama method, Milstein method and Runge-Kutta method. We will use Euler-Maruyama method for simulation of stochastic differential equations for financial problems, such as asset pricing model, square-root asset pricing model, payoff for a European call option and estimating value of European call option and Asian option to buy the asset at the future time. We will discuss how to find the approximated solutions to stochastic differential equations for financial problems with examples.
Бесплатно
Статья научная
In computational study and automatic recognition of opinions in free texts, certain words in sentences are used to decide its sentiments. While analysing each customer’s opinion per time in churn management will be effective for personalised recommendations. Oftentimes, the opinion is not sufficient for contextualised content mining. While personalised recommendations are time consuming, it also does not provide complete picture of an overall sentiment in the business community of customers. To help businesses identify widespread issues affecting a large segment of their customers towards engendering patterns and trends of different customer churn behaviour, here, we developed a clustered contextualised conversation as opinions set for integration with Roberta Model. The developed churn behavioural opinion clusters disambiguated short messages while charactering contents collectively based on context beyond keyword-based sentiment matching for effective mining. Based on the predicted opinion threshold, customer churn category for group-based personalised decision support was generated, with matching concepts. The baseline RoBERTa model on the contextually clustered opinions, trained with a batch size of 16, a learning rate of 2e-5, over 8 epochs, using a maximum sequence length of 128 and standard hyperparameters, achieved an accuracy of 92%, Precision of 88%, Recall of 86% and F1 score of 84% over a test set of 30%.
Бесплатно
VLSI Circuit Configuration Using Satisfiability Logic in Hopfield Network
Статья научная
Very large scale integration (VLSI) circuit comprises of integrated circuit (IC) with transistors in a single chip, widely used in many sophisticated electronic devices. In our paper, we proposed VLSI circuit design by implementing satisfiability problem in Hopfield neural network as circuit verification technique. We restrict our logic construction to 2-Satisfiability (2-SAT) and 3-Satisfiability (3-SAT) clauses in order to suit with the transistor configuration in VLSI circuit. In addition, we developed VLSI circuit based on Hopfield neural network in order to detect any possible error earlier than the manual circuit design. Microsoft Visual C++ 2013 is used as a platform for training, testing and validating of our proposed design. Hence, the performance of our proposed technique evaluated based on global VLSI configuration, circuit accuracy and the runtime. It has been observed that the VLSI circuits (HNN-2SAT and HNN-3SAT circuit) developed by proposed design are better than the conventional circuit due to the early error detection in our circuit.
Бесплатно
Vague Logic Approach to Disk Scheduling
Статья научная
Vague sets theory separates the evidences in favour and against of an element in a set which provides better mechanism to handle impreciseness and uncertainty. This research paper aims to handle the incompleteness and impreciseness of data associated with the disk access requests. Here, we propose a new disk scheduling algorithm, Vague Disk Scheduling (VDS) Algorithm, based on vague logic. The proposed framework includes Vague-Fuzzification Technique, Priority Expression, and VDS Algorithm. The Vague-Fuzzification Technique is applied to the input data of each disk access request and generates a priority for each request in the queue. Based on the priority allotted the requests are serviced. Finally work is evaluated on different datasets and finally compared with Fuzzy Disk Scheduling (FDS) Algorithm. The results prove that VDS algorithm performs better than FDS Algorithm.
Бесплатно
Varna-based optimization: a new method for solving global optimization
Статья научная
A new and simple optimization algorithm known as Varna-based Optimization (VBO) is introduced in this paper for solving optimization problems. It is inspired by the human-society structure and human behavior. Varna (a Sanskrit word, which means Class) is decided by people’s Karma (a Sanskrit word, which means Action), not by their birth. The performance of the proposed method is examined by experimenting it on six unconstrained, and five constrained benchmark functions having different characteristics. Its results are compared with other well-known optimization methods (PSO, TLBO, and Jaya) for multi-dimensional numeric problems. Our experimental results show that the VBO outperforms other optimization algorithms and have proved the better effectiveness of the proposed algorithm.
Бесплатно
Vehicle Tracking and Locking System Based on GSM and GPS
Статья научная
Currently almost of the public having an own vehicle, theft is happening on parking and sometimes driving insecurity places. The safe of vehicles is extremely essential for public vehicles. Vehicle tracking and locking system installed in the vehicle, to track the place and locking engine motor. The place of the vehicle identified using Global Positioning system (GPS) and Global system mobile communication (GSM). These systems constantly watch a moving Vehicle and report the status on demand. When the theft identified, the responsible person send SMS to the microcontroller, then microcontroller issue the control signals to stop the engine motor. Authorized person need to send the password to controller to restart the vehicle and open the door. This is more secured, reliable and low cost.
Бесплатно