International Journal of Intelligent Systems and Applications @ijisa
Статьи журнала - International Journal of Intelligent Systems and Applications
Все статьи: 1203

Simplified real-, complex-, and quaternion-valued neuro-fuzzy learning algorithms
Статья научная
The conventional real-valued neuro-fuzzy method (RNF) is based on classic fuzzy systems with antecedent membership functions and consequent singletons. Rules in RNF are made by all the combinations of membership functions; thus, the number of rules as well as total parameters increase rapidly with the number of inputs. Although network parameters are relatively less in the recently developed complex-valued neuro-fuzzy (CVNF) and quaternion neuro-fuzzy (QNF), parameters increase with number of inputs. This study investigates simplified fuzzy rules that constrain rapid increment of rules with inputs; and proposed simplified RNF (SRNF), simplified CVNF (SCVNF) and simplified QNF (SQNF) employing the proposed simplified fuzzy rules in conventional methods. The proposed simplified neuro-fuzzy learning methods differ from the conventional methods in their fuzzy rule structures. The methods tune fuzzy rules based on the gradient descent method. The number of rules in these methods are equal to the number of divisions of input space; and hence they require significantly less number of parameters to be tuned. The proposed methods are tested on function approximations and classification problems. They exhibit much less execution time than the conventional counterparts with equivalent accuracy. Due to less number of parameters, the proposed methods can be utilized for the problems (e.g., real-time control of large systems) where the conventional methods are difficult to apply due to time constrain.
Бесплатно

Simulation Model of Magnetic Levitation Based on NARX Neural Networks
Статья научная
In this paper, we present analysis of different training types for nonlinear autoregressive neural network, used for simulation of magnetic levitation system. First, the model of this highly nonlinear system is described and after that the Nonlinear Auto Regressive eXogenous (NARX) of neural network model is given. Also, numerical optimization techniques for improved network training are described. It is verified that NARX neural network can be successfully used to simulate real magnetic levitation system if suitable training procedure is chosen, and the best two training types, obtained from experimental results, are described in details.
Бесплатно

Simulation and Analysis of Umbilical Blood Flow using Markov-based Mathematical Model
Статья научная
The intra-uterine development of the fetus depends on various factors, one such critical factor is umbilical blood flow because the quantity of oxygen delivered to the placenta and to the fetus is directly limited by umbilical blood flow rate. Since the measurement of the hemodynamic quantities such as blood pressure and blood flow rate is not possible in utero hence the use of patient-specific mathematical modeling is beneficial for the assessment of feto-maternal well-being. A Markov model based mathematical model of fetal circulation is developed by taking three node concept. The fetus, the umbilical cord, and the placenta represent the 3 nodes of Markov model. A LabVIEW-based virtual instrument is designed to simulate the mathematical model which results in waveform similar to Doppler blood flow velocimetry of umbilical artery. The model is simulated at various degree of conductivity of the umbilical cord to the oxygenated blood. Simulation results show that the umbilical artery blood flow velocity waveform depends on gestation age, fetal heart rate, uterine contraction and placental insufficiency. The Doppler indices calculated from simulation helps in predicting both fetal and maternal abnormalities at various degrees of the conductivity to the blood flow passage. Therefore, integrating patient-specific models along with established medical equipments will be helpful in identifying true intra-uterine growth restricted fetuses from normal fetuses and helps clinicians to take timely interventions.
Бесплатно

Simulation for the reverse extrapolation of radar threats and their verification
Статья научная
Various and unpredictable electronic warfare situations drive the development of an integrated electronic warfare (EW) simulator that can perform electronic warfare modeling and simulation on radar threats. This paper introduces the basic components of simulation system that enables our agents to be operational in EW settings. In various simulation of EW environments, our agents can preset their path in the existence of enemy radars' surveillance and autonomously be aware of radar threats while they proceed in their own route. As reversely extrapolating radar threats given radio-active parameters received, our agents perform an appropriate jamming technique in order to deceive the enemy radar keeping track of our agents. Based upon the response of the radar threat attacked by the jamming techniques, our agents figure out the types of the radar threat and verify its identification. For the actual and helpful information, real radars with the probability of similarity could be prioritized from radar database. The integrated EW simulator that we have designed and developed in this paper enables our agents to perform such capabilities as reverse extrapolation of RF threats, its verification using jamming, and recommendation of similar radars, and to evaluate their autonomous behaviors in a tapestry of realistic scenarios.
Бесплатно

Статья научная
This paper introduces the status of parallel-type Electrostatic Fabric Filter was researched, and the factors influencing collection efficiency were analyzed in this paper. Using software Gambit, which also meshed the calculating region, a three-dimensional structure model of the precipitator was established. And then the numerical simulation of the air distribution characteristic was carried on with the software of fluent 6.2, which sets the boundary conditions, standard k-ε 2-equation model and SIMPLE algorithm; Then draw the path line and contour chart of the cross-section, obtained the mean square deviation value, analyzed the airflow distribution situation and the reasons for why its uneven. By setting an appropriate opening rate for the airflow distribution plates and collection plates to improve the air distribution. The results show that the airflow distribution can be uniformed by improving the opening rate of the collection plates. The numerical simulation result is more reasonable and can be used as the reference of optimizing the structural design of Electrostatic Fabric Filter.
Бесплатно

Simulation of Fuzzy Logic Based Shunt Hybrid Active Filter for Power Quality Improvement
Статья научная
This paper deals with the implementation of fuzzy logic based Shunt Hybrid Active Filter (SHAF) with non-linear load to minimize the source current harmonics and provide reactive power compensation. Comparison with Proportional Integral (PI) based SHAF is also analyzed. Shunt Hybrid Active Filter is constituted by Active Filter connected in shunt and shunt connected three phase single tuned LC filter for 5th harmonic frequency with rectifier load. The Active Filtering System is based on Synchronous Reference Frame. The proposed fuzzy logic based control strategy improves active filter operation and reduces the selective harmonic contents. The control strategies are demonstrated through MATLAB Simulated Environment.
Бесплатно

Simulation of High Step-Up DC–DC Converter for Photovoltaic Module Application using MATLAB/SIMULINK
Статья научная
As per the present scenario lot of power shortages are there in all over the world especially country like India the grid transferring problem is also high. Almost the power from the fossil fuels are becoming so less some of the examples of the fossil fuels are (coal, lignite, oil, and gases).So most of them looking in forward for the power from green or renewable based energies like solar, wind, biomass, tidal etc. Which does not cause any pollution to the environment. In this paper the simulation and analysis of the PV panel and also high efficient boost converter design and simulation is also performed. Even though the solar based systems are renewable based energies when compared to other renewable energies like wind, biomass it does not connect to more number of grid connections. Lot of necessary steps want to be taken one of the main important factor that high efficient boost converter is needed, here in this paper the input voltage to the boost converter is given as 15V and receives the output voltage of 55.64V
Бесплатно

Simulation on Different Proportions of Coal and Natural Gas Co-combustion in a Rotary Lime Kiln
Статья научная
Co-combustion of coal and natural gas is a promising technology in the production of active lime. For this technology, proper fuel proportion of coal and natural gas (α) is one of the key parameters that requires significant thought. By means of numerical simulation, contrast studies on co-combustion with five different fuel proportions were carried out. This paper firstly puts forward the models used to describe the system based on the actual conditions. Then, numerical simulation results were analysed in detail to illustrate the co-combustion process and the velocity and temperature distribution in the kiln. Finally, comparisons of high temperature region, char conversion, length of calcining zone, CO and NOx emission and total heat transfer rate to the material bed were made in order to make a decision on fuel proportion. Synthetically considering, α=30% is a balance between benefits and costs for the rotary lime kiln studied.
Бесплатно

Single and Multi-Area Optimal Dispatch by Modified Salp Swarm Algorithm
Статья научная
This paper presents modified salp swarm algorithm (MSSA) for solution of power system scheduling problems with diverse complexity level. Salp swarm algorithm (SSA) is a recently proposed efficient nature inspired (NI) optimization method inspired by foraging behaviour of salps found in deep ocean. SSA sometimes suffers to stagnation at local minima, to overcome this problem and enhancing searching capability by both exploration and exploitation MSSA is proposed in this paper. MSSA applied and tested on two types of problems. Type one is having five benchmark functions of diverse nature, whereas type two is related with real world problem of power system scheduling of a standard IEEE 114 bus system with 54 thermal units for (i) single area system, (ii) two area system and (iii) three area system. Finally Outcome of simulation results are validated with reported results by other method available in literature.
Бесплатно

Single and Multiple Hand Gesture Recognition Systems: A Comparative Analysis
Статья научная
With the evolution of higher computing speed, efficient communication technologies, and advanced display techniques the legacy HCI techniques become obsolete and are no more helpful in accurate and fast flow of information in present day computing devices. Hence the need of user friendly human machine interfaces for real time interfaces for human computer interaction have to be designed and developed to make the man machine interaction more intuitive and user friendly. The vision based hand gesture recognition affords users with the ability to interact with computers in more natural and intuitive ways. These gesture recognition systems generally consist of three main modules like hand segmentation, hand tracking and gesture recognition from hand features, designed using different image processing techniques which are further integrated with different applications. An increase use of new interfaces based on hand gesture recognition designed to cope up with the computing devices for interaction. This paper is an effort to provide a comparative analysis between such real time vision based hand gesture recognition systems which are based on interaction using single and multiple hand gestures. Single hand gesture based recognition systems (SHGRS) have fewer complexes to implement, with a constraint to the count of different gestures which is large enough with various permutations and combinations of gesture, which is possible with multiple hands in multiple hand gesture recognition systems (MHGRS). The thorough comparative analysis has been done on various other vital parameters for the recognition systems.
Бесплатно

Skin Diseases Expert System using Dempster-Shafer Theory
Статья научная
Based on World Health Organization (WHO) report in the 2011 Skin diseases still remain common in many rural communities in developing countries, with serious economic and social consequences as well as health implications. Directly or indirectly, skin diseases are responsible for much disability (and loss of economic potential), disfigurement, and distress due to symptoms such as itching or pain. In this research, we are using Dempster-Shafer Theory for detecting skin diseases and displaying the result of detection process. We describe five symptoms as major symptoms which include blister, itch, scaly skin, fever, and pain in the rash. Dempster-Shafer theory to quantify the degree of belief, our approach uses Dempster-Shafer theory to combine beliefs under conditions of uncertainty and ignorance, and allows quantitative measurement of the belief and plausibility in our identification result. The result reveal that Skin Diseases Expert System has been successfully detecting skin diseases and displaying the result of identification process.
Бесплатно

Sky-CNN: a CNN-based learning approach for skyline scene understanding
Статья научная
Skyline scenes are a scientific matter of interest for some geographers and urbanists. These scenes have not been well-handled in computer vision tasks. Understanding the context of a skyline scene could refer to approaches based on hand-crafted features combined with linear classifiers; which are somewhat side-lined in favor of the Convolutional Neural Networks based approaches. In this paper, we proposed a new CNN learning approach to categorize skyline scenes. The proposed model requires a pre-processing step enhancing the deep-learned features and the training time. To evaluate our suggested system; we constructed the SKYLINEScene database. This new DB contains 2000 images of urban and rural landscape scenes with a skyline view. In order to examine the performance of our Sky-CNN system, many fair comparisons were carried out using well-known CNN architectures and the SKYLINEScene DB for tests. Our approach shows it robustness in Skyline context understanding and outperforms the hand-crafted approaches based on global and local features.
Бесплатно

Статья
This study presents a deep learning-based approach to automated resume and job matching that uses semantic similarity between texts. The solution is based on SimCSE RoBERTa transformer embeddings and a Siamese neural architecture trained using the MSELoss loss function. Unlike traditional filtering systems by keywords or characteristics, the proposed model learns to place semantically compatible pairs (resume-vacancy) in a common vector space. Unlike traditional keyword-based or attributive matching systems, our method is designed to capture deep semantic alignment between resumes and job descriptions. To evaluate the effectiveness of this architecture, we conducted extensive experiments on a labelled dataset of over 7,000 resume–vacancy pairs obtained from the HuggingFace repository. The dataset includes three classes (Good Fit, Potential Fit, No Fit), which we restructured into a binary classification task. Annotation labels reflect textual compatibility based on skills, responsibilities, and experience, ensuring task relevance. It resulted in a moderately imbalanced dataset with approximately 66% positive and 34% negative examples. Labels were assigned based on semantic compatibility, including skill match, job responsibilities, and experience alignment. Our model achieved accuracy = 72%, precision = 70%, recall = 74%, F1-score = 72%, and Precision@10 = 75%, significantly outperforming both classical (TF-IDF + cosine similarity) and neural (Sentence-BERT without fine-tuning) baselines. These results validate the empirical effectiveness of our architecture for candidate ranking and selection. To justify the use of a complex Siamese architecture, the system was compared to two baselines: (1) a classical TF-IDF + cosine similarity method, and (2) a pretrained Sentence-BERT model without task-specific fine-tuning. The proposed model significantly outperformed both baselines across all evaluation metrics, confirming that its complexity translates to meaningful performance gains. A basic self-learning mechanism is implemented and functional. Recruiters can provide binary feedback (Fit / No Fit) for each recommended candidate, which is stored in a feedback table. This feedback can be used to retrain or fine-tune the model periodically, enabling adaptive behaviour over time. While initial retraining experiments were conducted offline, full automation and continuous integration of feedback into training pipelines remain a goal for future development. The system offers sub-5-second response times, integration with vector databases, and a web-based user interface. It is designed for use in HR departments, recruiting agencies, and employment platforms, with potential for broader commercial deployment and domain adaptation. We additionally implemented a feedback-driven retraining loop that enables future self-supervised adaptation. While UI and vector retrieval infrastructure were developed to support prototyping and deployment, the primary research innovation centres on the modelling framework, learning setup, and comparative evaluation methodology. This work contributes to the advancement of semantically-aware intelligent recruiting systems and offers a replicable baseline for future studies in neural recommendation for HR applications. The risks of algorithmic bias are emphasised separately: even in the absence of obvious demographic characteristics in the input data, the model can implicitly reproduce social or historical inequalities inherent in the data. In this regard, the study outlines areas for further development, in particular equity auditing, bias reduction techniques, and the integration of human validation in decision-making.
Бесплатно

Smart Parking System with Image Processing Facility
Статья научная
Smart Parking Systems obtain information about available parking spaces, process it and then place the car at a certain position. A prototype of the parking assistance system based on the proposed architecture was constructed here. The adopted hardware, software, and implementation solutions in this prototype construction are described in this paper. The effective circular design is introduced here having rack-pinion special mechanism which is used to lift and place the car in the certain position. The design of rack pinion mechanism is also simulated using AUTODESK INVENTOR and COMSOL software.
Бесплатно

Статья научная
Manually, to manage stocks amounts spending the every day in the rays to count for each product the number which it remains in stores, or to record by a scanner head barcode information dependent of each product. However, the mission become increasingly difficult if several warehouses are found, that involves much time to pass from a product to another, moreover that requires agents to carry out these spots. In this article we use a network architecture neuron combined with the readers bar code of technology vision, this method allows to know in real time information concerning each product in stock. It will allow besides introducing the concept of real stocks rather than physical. However The basic classical use of data and to feed it will be completely changed by the spheres of knowledge which generates the NN (Neural Network) to store information on the quantity at a given time (Dynamic inventory), the entries(delivery of suppliers ) and the outputs ( delivery or sale with the customers and use of manufacturing pieces or repair ).
Бесплатно

Solving Economic Load Dispatch Problem Using Particle Swarm Optimization Technique
Статья научная
Economic load dispatch (ELD) problem is a common task in the operational planning of a power system, which requires to be optimized. This paper presents an effective and reliable particle swarm optimization (PSO) technique for the economic load dispatch problem. The results have been demonstrated for ELD of standard 3-generator and 6-generator systems with and without consideration of transmission losses. The final results obtained using PSO are compared with conventional quadratic programming and found to be encouraging.
Бесплатно

Solving Practical Economic Dispatch Problems Using Improved Artificial Bee Colony Method
Статья научная
This paper presents an improved artificial bee colony (IABC) optimization method to solving practical economic dispatch taking into account the nonlinear generator characteristics such as valve-point loading effects. In order to exploit the performance of this new variant based ABC method to solving practical economic dispatch, a new local search mechanism (LSM) associated to the original ABC algorithm; it allows exploiting effectively the promising region to locate the best solution. The proposed approach has been examined and applied to many practical electrical power systems, the 13 generating units, and to the large electrical system with 40 generating units considering valve point loading effects. From the different case studies, it is observed that the results compared with the other recent techniques demonstrate the potential of the proposed approach and show clearly its effectiveness to solve practical and large ED.
Бесплатно

Solving Traveling Salesman Problem Through Genetic Algorithm with Clustering
Статья научная
The Traveling Salesman Problem (TSP) is a well-known NP-hard combinatorial optimization problem, commonly studied in computer science and operations research. Due to its complexity and broad applicability, various algorithms have been designed and developed from the viewpoint of intelligent search. In this paper, we propose a two-stage method based on the clustering concept integrated with an intelligent search technique. In the first stage, a set of clustering techniques - fuzzy c-means (FCM), k-means (KM), and k-mediods (KMD) - are employed independently to generate feasible routes for the TSP. These routes are then optimized in the second stage using an improved Genetic Algorithm (IGA). Actually, we enhance the traditional Genetic Algorithm (GA) through an advanced selection strategy, a new position-based heuristic crossover, and a supervised mutation mechanism (FIB). This IGA is implemented to the feasible routes generated in the clustering stage to search the optimized route. The overall solution approach results in three distinct pathways: FCM+IGA, KM+IGA, and KMD+IGA. Simulation results with 47 benchmark TSP datasets demonstrate that the proposed FCM+IGA performs better than both KM+IGA and KMD+IGA. Moreover, FCM+IGA outperforms other clustering-based algorithms and several state-of-the-art methods in terms of solution quality.
Бесплатно

Solving a Class of Non-Smooth Optimal Control Problems
Статья научная
In this paper, we first propose a new generalized derivative for non-smooth functions and then we utilize this generalized derivative to convert a class of non-smooth optimal control problem to the corresponding smooth form. In the next step, we apply the discretization method to approximate the obtained smooth problem to the nonlinear programming problem. Finally, by solving the last problem, we obtain an approximate optimal solution for main problem.
Бесплатно

Solving a Linear Programming with Fuzzy Constraint and Objective Coefficients
Статья научная
In this paper, we consider a method for solving a linear programming problem with fuzzy objective and coefficient matrix, where the fuzzy numbers are supposed to be triangular. By the proposed method, the Decision Maker will have the flexibility of choosing. The solving method is based on the Pareto algorithm, which converts the problem to a weighted-objective linear programming. For more illustration, after discussing the problem and the algorithm, we present an example, which its solutions are independent from the objective weights.
Бесплатно