Обзоры, проблемы. Рубрика в журнале - Сельскохозяйственная биология

Публикации в рубрике (130): Обзоры, проблемы
все рубрики
Характеристика перспективных сортов пшеницы (Triticum aestivum L.), допущенных к возделыванию в Нижневолжском регионе, по устойчивости к возбудителям пиренофорозной и темно-бурой пятнистости

Характеристика перспективных сортов пшеницы (Triticum aestivum L.), допущенных к возделыванию в Нижневолжском регионе, по устойчивости к возбудителям пиренофорозной и темно-бурой пятнистости

Конькова Э.А., Лящева С.В., Зеленева Ю.В., Коваленко Н.М.

Статья научная

Ежегодный мониторинг фитосанитарного состояния посевов пшеницы в Саратовской области показывает активное развитие листовых пятнистостей и накопление их инфекционного потенциала. Pyrenophora tritici-repentis - возбудитель пиренофороза, или желтой пятнистости листьев, одной из опасных болезней пшеницы. Bipolaris sorokiniana - возбудитель темно-бурой пятнистости, потенциально опасного заболевания пшеницы. В настоящей работе в результате комплексной полевой и лабораторной оценки 20 сортов мягкой пшеницы ( Triticum aestivum L.), возделываемых на территории Нижневолжского региона, впервые выявлены образцы, устойчивые к возбудителю пиренофороза, а также среднеустойчивые к возбудителю темно-бурой пятнистости. Результаты идентификации аллелей Tsn1 и tsn1 с использованием молекулярного маркера Xfcp623 показали, что среди изучаемых образцов пшеницы ген Tsn1 преимущественно встречался у озимых сортов. Мы впервые выявили статистически значимые различия между средними значениями показателей, полученных при полевой фитопатологической оценке сортов из разных групп устойчивости (RR, R, MS и S) к P. tritici-repentis . Цель работы - определение устойчивости сортов озимой и яровой мягкой пшеницы ( Triticum aestivum L.), возделываемых на территории Нижневолжского региона, к возбудителям желтой и темно-бурой пятнистостей и идентификация у растений доминантного ( Tsn1 ) и рецессивного ( tsn1 ) аллелей. В работе исследовали 13 сортов озимой мягкой пшеницы (Гостианум 237, Лютесценс 230, Саратовская 8, Губерния, Мироновская 808, Донская безостая, Саратовская 90, Жемчужина Поволжья, Саратовская 17, Калач 60, Подруга, Анастасия, Соседка) и 7 - яровой мягкой пшеницы (Фаворит, Прохоровка, Юго-Восточная 2, Саратовская 70, Саратовская 73, Белянка, Лебедушка). Из них 16 были допущены к использованию в 2022 году. Соседка - перспективный сортообразец озимой мягкой пшеницы; Гостианум 237, Лютесценс 230, Саратовская 8 - селекционные сорта озимой мягкой пшеницы саратовской селекции, полученные в первой половине XX века. Полевые испытания проводили в 2020-2022 годах в селекционном питомнике ФГБНУ Федеральный аграрный научный центр Юго-Востока (г. Саратов). Для оценки сортов пшеницы к местной популяции возбудителя пиренофороза на естественном инфекционном фоне использовали модифицированную и дополненную шкалу Саари-Прескотта (Saari and Prescott). В лабораторных условиях листья растений заражали P. tritici-repentis и B. soro-kiniana . Инокулюм включал смесь нескольких изолятов гриба из коллекции Всероссийского НИИ защиты растений, полученных в 2022 году из растительного инфекционного материала из Саратовской ( P. tritici-repentis , ToxA ), Ленинградской ( B. sorokiniana ) областей и Республики Казахстан ( P. tritici-repentis , ToxB ). Для фитопатологической оценки P. tritici-repentis использовали балльную шкалу, характеризующую степень развития некрозов и хлорозов. При оценке устойчивости пшеницы к темно-бурой пятнистости, вызываемой B. sorokiniana , использовали шкалу, разработанную в ВИЗР. Геномную ДНК из листьев 5-суточных проростков пшеницы выделяли стандартным методом СТАВ/хлороформ. После количественной оценки концентрацию ДНК нормализовали до 30 нг/мкл для последующей ПЦР. Скрининг изолятов на присутствие доминантного или рецессивного аллеля гена ( Tsn1 / tsn1 ) в генотипе сорта проводили методом ПЦР с парами праймеров Xfcp623F/Xfcp623R (ЗАО «Евроген», Россия). Доля сортов, устойчивых к изолятам P. tritici-repentis , способным продуцировать токсины, кодируемые генами TохА и Tох B , составила 40 %, к изоляту с геном TохА - 55 %, с Tох B - 60 %. Доля сортов, показавших среднюю устойчивость к Bipolaris sorokiniana , составила всего 15 %. Наибольший интерес представляют генотипы трех сортов озимой мягкой пшеницы (Гостианум 237, Мироновская 808, Подруга) и пять генотипов яровой мягкой пшеницы (Фаворит, Прохоровка, Саратовская 70, Саратовская 73, Белянка), которые оказались устойчивы к пиренофорозу в лабораторных и трехлетних полевых испытаниях. При молекулярном скр

Бесплатно

Цветушность сахарной свеклы (Beta vulgaris subsp. Vulgaris var. Altissima d"oll): причины, генетические механизмы и предотвращение (обзор)

Цветушность сахарной свеклы (Beta vulgaris subsp. Vulgaris var. Altissima d"oll): причины, генетические механизмы и предотвращение (обзор)

Крупина А.Ю., Крупин П.Ю., Карлов Г.И., Дивашук М.Г.

Статья обзорная

Сахарная свекла - важная сельскохозяйственная культура, продукты переработки которой используются в производстве сахара и спирта, животноводческой, кондитерской и других отраслях промышленности. Будучи двухлетним растением, сахарная свекла в первый год формирует корнеплод, а во второй год, после зимнего хранения, - цветонос и соцветия. Способность формировать цветонос в первый год жизни называется цветушностью. Образование цветоноса у сахарной свеклы происходит в результате воздействия низких положительных температур (яровизация) и длинного светового дня. Цветушность актуальна для регионов свеклосеяния с холодными веснами и длинным световым днем и приводит к потере урожая и сахара. С точки зрения генетики цветушность обусловлена работой сложной системы генов перехода из вегетативной фазы развития в генеративную, центральное место в которой занимает взаимодействие генов BvBTC1 и BvBBX19 . Функциональные продукты экспрессии стимулируют ген-индуктор цветения BvFT2 и подавляют экспрессию гена-репрессора цветения BvFT1 (N. Dally с соавт., 2018). В геноме свеклы среди генов цветения идентифицировано множество генов-ортологов арабидопсиса, характеризующихся дифференциальной экспрессией и метилированием в результате яровизации и различающихся у устойчивых и неустойчивых к цветушности генотипов (M.-V. Trap-Gentil с соавт., 2011; Z. Pi с соавт., 2021). Главный физиологический регулятор перехода к цветению у сахарной свеклы - гибберелловая кислота, гены-регуляторы синтеза которой также участвуют в яровизации (E. Mutasa-Gottgens с соавт., 2009). Главные методы борьбы с цветушностью состоят в использовании соответствующих агротехнических приемов и в создании устойчивых сортов и гибридов селекционно-генетическими методами. Агротехнические методы подразумевают правильную дату сева, при которой растения не подвергаются воздействию низких положительных температур, выбор сортов, рекомендованных для зоны возделывания, уничтожение раннецветущих растений, использование химической обработки семян и вегетирующих растений (И.А. Оксененко с соавт., 1987; К.С. Девликамов с соавт., 2016; M. Sadeghi-Shoae с соавт., 2017). Селекционные методы предполагают создание аналитического фона для негативного отбора цветушного материала: сверхранний и подзимний посевы, отбор в условиях длинного дня, посев яровизированными семенами, посев в почву, обработанную гербицидами (А.В. Корниенко с соавт., 1983; А.В. Логвинов с соавт., 2021, 2022). Важно проводить оценку генетических ресурсов из мировых коллекций как культурных, так и дикорастущих образцов для поиска новых доноров устойчивости к цветушности (Е.С. Кутняхова с соавт., 2016; В.И. Буренин с соавт., 2018). Важным методом при создании новых ценных аллелей нецветушности служит мутагенез на основе этилметансульфоната. Маркеры для аллельных вариантов (гаплотипов) функциональных генов цветения, а также найденные локусы количественных признаков и однонкулеотидные полиморфизмы, ассоциированные с устойчивостью к цветушности, могут быть использованы в маркер-опосредованной селекции (B. Büttner с соавт., 2010; Y. Kuroda с соавт., 2019; S. Ravi с соавт., 2021). Для ускоренной селекции и семеноводства по схеме «от семени до семени» перспективна стимуляция цветушности растений сахарной свеклы в условиях искусственного климата за счет правильно подобранной температуры, фенофазы начала яровизации, продолжительности и качества светового периода.

Бесплатно

Эволюционно-генетические основы симбиотической инженерии растений: мини-обзор

Эволюционно-генетические основы симбиотической инженерии растений: мини-обзор

Проворов Н.А., Онищук О.П.

Статья научная

Микробно-растительные симбиозы играют огромную роль в развитии и эволюции растений, обеспечивая их минеральное (азотное, фосфорное) питание, устойчивость к патогенным микроорганизмам и животным-фитофагам, а также регуляцию развития в стрессовых условиях (R.J.Rodriguez с соавт., 2009). Конструирование высокоэффективных симбиозов должно базироваться на знании механизмов коэволюции микроорганизмов и растений в природных экосистемах и агроценозах. На примере азотфиксирующего бобово-ризобиального симбиоза мы показали, что основные этапы коэволюции могут быть воспроизведены с использованием подходов симбиотической инженерии.Она направлена наоптимизацию процессов переноса между партнерами соединений азота и углерода, связанного с образованием объединенных путей обмена веществ и энергии; ослабление конкуренции партнеров за трофические и энергетические ресурсы окружающей среды; вступление партнеров в отношения альтруизма, основанные на отказе микросимбионтов от автономного существования, например образование ризобиями неспособных к размножению бактероидов...

Бесплатно

Эволюция методов оценки биоразнообразия северного оленя (Rangifer tarandus) (обзор)

Эволюция методов оценки биоразнообразия северного оленя (Rangifer tarandus) (обзор)

Харзинова В.Р., Денискова Т.Е., Сермягин А.А., Доцев А.В., Соловьева А.Д., Зиновьева Н.А.

Статья обзорная

Северный олень Rangifer tarandus, единственный вид рода Rangifer, - важнейшая составляющая продовольственной безопасности коренных народов Российского Севера и незаменимое звено экосистем Арктики (А. Савченко, 2014; В.Г. Логинов, 2014). В настоящее время из-за неблагоприятных природных и антропогенных факторов наблюдается резкое сокращение численности поголовья как домашних, так и диких северных оленей, что приводит к потере генетического разнообразия, необходимого для выживания в новых условиях обитания (Ю.А. Столповский, 2010). В связи с этим все более актуален мониторинг генетического разнообразия ресурсных пород и дикой формы северного оленя с помощью генетических маркеров. В настоящем обзоре обобщены результаты исследований генетического разнообразия северного оленя с использованием различных методов молекулярно-генетического анализа. Первые генетические исследования северного оленя начались в 1960-х годах с изучения полиморфизма сывороточного трансферрина (В. Gahne с соавт., 1961; М. Braend, 1964). Были открыты типы трансферрина, отличающиеся друг от друга положением полос и подвижностью при гель-электрофорезе (A.V. Soldal с соавт., 1979; K.H. Roed, 1985; П.Н. Шубин с соавт., 1988). С развитием генетических технологий широкую популярность приобрели ДНК-маркеры (M. Çalişkan, 2012). Так называемые «анонимные» маркеры - сначала RAPD (random amplified polymorphic DNA) (В.В. Гончаров с соавт., 2009), позднее ISSR (inter simple sequence repeats) (Н.В. Кол с соавт., 2006; Т.М. Романенко с соавт., 2014; Г.Я. Брызгалов, 2016) - стали первыми ДНК-маркерами, используемыми для изучения биоразнообразия популяций северного оленя. С момента публикации полной нуклеотидной последовательности контрольного региона митохондриального генома у подвидов северного оленя Евразии и Северной Америки широкое распространение получил анализ полиморфизма митохондриальной ДНК (M.A. Cronin, 1992; E. Randi с соавт., 2001; А.В. Давыдов с соавт., 2007; М.В. Холодова с соавт., 2009; А.Н. Королев с соавт., 2017). Метод стал высокоинформативным инструментом для выяснения филогении и происхождения пород и популяций вида по материнской линии (Ø. Flagstad с соавт., 2003; Н.А. Акопян с соавт., 2016). Микросателлиты нашли широкое применение в прикладных исследованиях генетики северного оленя (установление генетической структуры, характеристика аллелофонда, идентификация и дифференциация особей) (K.H. Røed с соавт., 1998; B.I. Jepsen с соавт., 2002; R. Courtois с соавт., 2003; M.A. Cronin с соавт., 2003; K.A. Zittlau, 2004; P.D. McLoughlin с соавт., 2004; A.D. McDevitt с соавт., 2009; А.И. Баранова с соавт., 2016). Для отечественных популяций северного оленя была разработана мультиплексная панель из 9 микросателлитов, которая успешно зарекомендовала себя в рутинном тестировании (В.Р. Харзинова с соавт., 2015), в том числе стало возможным выявление гибридов дикой и домашней форм (V.R. Kharzinova с соавт., 2016). Однако с развитием новых высокопроизводительных технологий и аналитического оборудования нового поколения (А. Vignal, 2002; Е.К. Хлесткина, 2013) на первый план в генетических исследованиях сельскохозяйственных животных выходят ДНК-чипы на основе генотипирования множественных SNP (single nucleotide polymorphism) (F.J. Steemers с соавт., 2007; S. Mastrangelo с соавт., 2014; Т.Е. Денискова с соавт., 2015; В. Slim с соавт., 2015, Н.А. Зиновьева с соавт., 2016; Т. Е. Денискова с соавт., 2016, R. Yonesaka с соавт. 2016). Несмотря на то, что собственный ДНК-чип для северного оленя отсутствует, применение чипа Bovine SNP50 BeadChip, разработанного для крупного рогатого скота, на сегодняшний день служит наиболее эффективным и высокоинформативным методом исследования генома этого вида (V.R. Kharzinova с соавт., 2015; V.R. Kharzinova с соавт., 2016; V.R. Kharzinova с соавт., 2017).

Бесплатно

Эволюция химиотерапии гельминтозов животных и человека (обзор)

Эволюция химиотерапии гельминтозов животных и человека (обзор)

Джафаров М.Х.

Статья обзорная

Рассмотрены основные классы современных антгельминтных субстанций широкого спектра действия (бензимидазолы, имидазолтиазолы, 16-членные макролиды), большое внимание уделено недавно созданным препаратам (эмодепсид, монепантел, дерквантел, трибендимидин), а также новым наработкам в этой области, от которых можно ожидать высокого эффекта. Обсуждены некоторые аспекты молекулярных механизмов действия антгельминтиков, резистентности к ним и альтернативные методы дегельминтизации. Высказано предположение о перспективности целенаправленного поиска новых антгельминтных субстанций в ряду производных условно родоначальных углеводородов — бензола, индена, нафталина, 1Н-циклопента[a]-нафталина и фенантрена на основе варьирования структуры от полностью ненасыщенных до насыщенных форм, в том числе содержащих гетероатомы (N, O, S), различные заместители и функциональные группы

Бесплатно

Эколого-физиологические и биохимические основы формирования зеленого криокорма в Якутии

Эколого-физиологические и биохимические основы формирования зеленого криокорма в Якутии

Петров К.А., Перк А.А., Чепалов В.А., Софронова В.Е., Ильин А.Н., Иванов Р.В.

Статья обзорная

Корм, выращенный в условиях Якутии, может быть дополнением к рациону многих сельскохозяйственных животных в Сибири, на Дальнем Востоке и Европейском Севере. Понимание механизмов адаптации растений к холоду, кроме общебиологического значения, имеет и прикладное, связанное с использованием этого практически неограниченного естественного кормового ресурса. В обзоре рассмотрены эколого-физиологические и биохимические аспекты формирования питательной ценности у замороженных естественным холодом осенневегетирующих травянистых растений, являющихся высокопитательным осенне-зимним нажировочным кормом (зеленый криокорм) для травоядных животных в крайне суровых условиях Севера. Наиболее полно результаты исследования физиологических основ адаптации растений к низкотемпературному стрессу представлены в ряде обзоров (Т.И. Трунова, 2007; L.V. Gusta с соавт., 2013; K. Miura с соавт., 2013). Приводятся данные по реакции растений на действие низких температур и адаптации к ним. В результате обобщения собственных многолетних исследований (А.Я. Перк с соавт., 1987; K.A. Petrov с соавт., 2010; А.Н. Ильин с соавт., 2015) и данных литературы разработана общая теория механизмов устойчивости растений и животных к длительной гипотермии в условиях многолетней мерзлоты (криолитозоны) Якутии. Предполагается, что адаптация растений к длительному низкотемпературному стрессу теснейшим образом связана с основным источником их энергии (липидами, полиеновыми жирными кислотами), играющим основную роль в формировании высокой питательной ценности замороженной естественным холодом осенневегетирующей растительности криолитозоны. Одна из особенностей холодового закаливания многолетних травянистых растений в криолитозоне Якутии, очевидно, заключается в высоком накоплении в клетках первичных и вторичных каротиноидов с наиболее выраженными антиоксидантными свойствами (B. Demmig-Adams с соавт., 2006). Зеленый криокорм обеспечивает жизнедеятельность травоядных животных, в том числе сельскохозяйственных (якутская лошадь, северный олень и др.), в условиях длительного и экстремально холодного зимнего периода. Технология производства зеленого криокорма позволяет удовлетворить потребность животных в белке, жирных маслах, углеводах и витаминах в течение всей зимовки. В результате научно-производственных опытов показана высокая питательная ценность зеленого криокорма, например, для табунного коневодства, что позволяет рекомендовать его для широкого внедрения в сельскохозяйственную практику регионов, где имеются фактически неограниченные холодовые ресурсы.

Бесплатно

Экспериментальные подходы к диагностике стрессов в птицеводстве (обзор)

Экспериментальные подходы к диагностике стрессов в птицеводстве (обзор)

Мифтахутдинов А.В.

Статья обзорная

Обобщены данные литературы о методах диагностики стрессов у кур в лабораторных и производственных условиях. В настоящее время разработаны многочисленные методы, позволяющие диагностировать состояние адаптационных механизмов и индивидуальной стрессовой чувствительности у кур. В то же время следует отметить, что использование тех из предложенных подходов, которые основаны на определении биохимических маркеров стресса в крови, в производственных условиях представляет собой непростую задачу из-за необходимости применять специальное оборудование, привлекать высококвалифицированный персонал, а также вследствие неоднозначной интерпретации результатов. Весьма информативным и менее сложным приемом при диагностике стрессового состояния у кур может быть изучение количественного соотношения гетерофилов и лимфоцитов в крови. Высокую диагностическую ценность в случае хронических стрессов имеют показатели общего оперения. В дополнение к ним целесообразно учитывать концентрацию стрессовых гормонов в крови и время тонической неподвижности кур. Однако и в этих случаях процедуры, которым подвергается птица, сами по себе служат факторами стресса, тогда как одно из важнейших условий достоверности результатов при его диагностике - минимальное воздействие на объект исследования. Для этих целей нами разработан способ, позволяющий диагностировать состояние стресса у кур родительского стада мясного направления продуктивности с помощью определения кортикостерона в пробах помета. Предлагаемый способ может быть использован при оценке целесообразности применения схем антистрессовой терапии, для определения оптимальной плотности комплектования производственных площадей, для анализа степени воздействия на организм кур технологических факторов и ветеринарных обработок.

Бесплатно

Экспрессия генов, связанных с хозяйственно полезными признаками цыплят-бройлеров (Gallus gallus domesticus), под влиянием различных паратипических факторов (обзор)

Экспрессия генов, связанных с хозяйственно полезными признаками цыплят-бройлеров (Gallus gallus domesticus), под влиянием различных паратипических факторов (обзор)

Сизова Е.А., Лутковская Я.В.

Статья обзорная

Промышленное производство мяса цыплят-бройлеров ( Gallus gallus domesticus ) основывается на использовании скороспелых высокопродуктивных кроссов, создание которых стало возможным благодаря работе генетиков и селекционеров. Исходные линии современных цыплят-бройлеров были получены в результате искусственного отбора, прежде всего по эффективности кормления, конверсии корма и скорости роста (W. Fu, с соавт., 2016). Прогрессивные генетические исследования, селекционные технологии и кормление в сочетании с эффективным ветеринарным контролем дают возможность производить мясо птицы высокого качества (A.A. Grozina, 2014). С 1957 по 2001 год время достижения цыплятами-бройлерами рыночной массы снизилось в 3 раза, при этом сократилось потребление кормов (M. Georges, с соавт., 2019). Определение экспрессии мРНК генов, участвующих в росте и развитии бройлеров, усвоении питательных веществ и устойчивости к возбудителям заболеваний, необходимо для успешного отбора птицы с желательными качествами (K. Lassiter с соавт., 2019). Целью представленного обзора стал анализ многообразия генов и их активности при формировании хозяйственно полезных признаков у цыплят-бройлеров и факторов, влияющих на экспрессию этих генов. В статье представлены гены, продукты которых принимают участие в росте и развитии ( GH , IGF-1 , GHR , MYOD1 , MYOG , MSTN ), усвоении нутриентов ( SLC2A1 , SLC2A2 , SLC2A3 , SLC2A8 , SLC2A9 , SLC2A12 , SLC6A19 , SLC7A1 , SLC7A2 , SLC7A5-7 , SLC15A1 , SLC38A2 ), иммунном ответе ( IL1B , IL6 , IL8L2 , IL16 , IL17A , IL18 , TNF- a, AvBD1-AvBD14 ). Одним из путей регуляции скорости роста скелета и размеров тела служит соматотропная ось гормон роста (growth hormone, GH)-инсулиноподобный фактор роста 1 (insulin like growth factor 1, IGF-1)-рецептор гормона роста (growth hormone receptor, GHR) (L.E. Ellestad с соавт., 2019). Анализ экспрессии генов GH , GHR и IGF-1 и отбор по признаку высокой скорости роста у цыплят-бройлеров может повысить активность связывания гормона роста, синтез IGF-1 в печени и, следовательно, массу тела (S. Pech-Pool с соавт., 2020). Миогенез опосредован действием различных факторов и генов, в их числе миогенный регуляторный фактор ( myogenic regulatory factors, MRF ), фактор миогенной дифференцировки 1 ( myogenic differentiation 1, MYOD1 ), миогенин ( myogenin, MYOG ), экспрессия которых может меняться в зависимости от ингредиентного состава рациона и специфических добавок. Значительно увеличить экспрессию генов MYOD1 и MYOG в грудных мышцах и GH и IGF-1 в печени одновременно с улучшением показателей роста можно при добавлении в рацион протеазы (Y. Xiao с соавт., 2020). Гены, ассоциированные с усвоением питательных веществ и их экспрессия влияют на транспортные белки, приводя к ускоренному поступлению нутриентов в эпителий кишечника, систему кровообращения, а затем ко всем органам и тканям. В свою очередь, их экспрессия может быть зависима от кормовых добавок различного функционала. В транспорте аминокислот задействованы носители растворенных веществ (solute carrier family, SLC): SLC6A19 (B0AT1) и SLC38A2 (SNAT2) - натрий-зависимые переносчики нейтральных аминокислот; SLC7A1 и SLC7A2 - переносчики катионных аминокислот (cationic amino acid transporter, CAT: CAT1, CAT2); SLC7A5-7 - переносчики L-аминокислот (L-type amino acid transporter, LAT: LAT1, gLAT2) (J.A. Payne с соавт., 2019; C.N. Khwatenge с соавт., 2020; N.S. Fagundes с соавт., 2020). На экспрессию генов иммунитета ( IL1B , IL6 , IL8L2, IL16, IL17A, IL18 , TNF- a, AvBD1-AvBD14 ) цыплят-бройлеров, инициирующих синтез факторов иммунного ответа, оказывает влияние инфицирование микроорганизмами Escherichia coli , Salmonella spp., Pseudomonas aeruginosa , Clostridium perfringens , Listeria monocytogenes , Eimeria spp. и др. (G.Y. Laptev с соавт., 2019; T. Nii с соавт., 2019). Также выявлено модулирующее влияние температуры на экспрессию генов. Повышенная температура выращивания птицы (39 °С) ведет к значительному увеличению экспрессии мРНК генов IL6 , IL1b , TNF- a, TLR2 , TLR4 , NFkB50 , NFkB65 , Hsp70 и HSF3 в тканях селезенки и печени (M.B. Al-Zghoul с соавт., 2019). В настоящее время идет поиск кормовых добавок (пребиотиков, пробиотиков, синбиотиков, фитобиотиков и аминокислот), которые поддерживают физиологическое состояние птицы, предотвращают развитие заболеваний, способствуют ускорению роста без ущерба для здоровья и улучшают продуктивность посредством воздействия на экспрессию генов.

Бесплатно

Эффективность азотфиксирующего симбиоза гуара (Cyamopsis tetragonoloba) со штаммами Bradyrhizobium retamae RCAM05275 и Ensifer aridi RCAM05276 в вегетационном опыте

Эффективность азотфиксирующего симбиоза гуара (Cyamopsis tetragonoloba) со штаммами Bradyrhizobium retamae RCAM05275 и Ensifer aridi RCAM05276 в вегетационном опыте

Ульянич П.С., Белимов А.А., Кузнецова И.Г., Сазанова А.Л., Юзихин О.С., Лактионов Ю.В., Карлов Д.С., Вишнякова М.А., Сафронова В.И.

Статья научная

Бобовая культура гуар ( Cyamopsis tetragonoloba (L.) Taub.) - источник гуаровой камеди (комплекс полисахаридов, который используется в различных отраслях промышленности). Эта культура широко возделывается в основном в Индии и Пакистане, но в последние годы возрастает интерес к промышленному выращиванию гуара в южных регионах России. Одна из проблем внедрения этой культуры в сельское хозяйство Российской Федерации - отсутствие в почвах бактерий, способных образовывать симбиотические клубеньки на корнях гуара в почвенно-климатических условиях России. В представляемой работе получены первые данные по эффективности инокуляции клубеньковыми бактериями гуара при выращивании в почвах России. Цель нашего исследования состояла в оценке эффективности симбиоза перспективных штаммов клубеньковых бактерий гуара Bradyrhizobium retamae RCAM05275 и Ensifer aridi RCAM05276 при выращивании растений в почвах, отобранных в разных районах Российской Федерации и не содержащих комплементарных клубеньковых бактерий. Для инокуляции семян гуара сорта Кубанский Юбилейный использовали инокулюмы в виде водных суспензий бактерий, полученные по стандартной методике приготовления жидких биопреператов клубеньковых бактерий. Эффективность симбиоза изучали в вегетационном опыте с выращиванием растений в дерново-подзолистой почве и чернозёме. Инокуляция обоими штаммами привела к активному образованию клубеньков (около 20-40 шт. на растение), в то время как на корнях контрольных растений клубеньков обнаружено не было. Количество клубеньков на растении было максимальным в вариантах инокуляции штаммом B. retamae RCAM05275. Значения общей массы клубеньков на одно растение были максимальными в вариантах инокуляции штаммом E. aridi RCAM05276 благодаря образованию более крупных клубеньков. Клубеньки формировались на боковых корнях, имели округлую неправильную форму, розоватый цвет (свидетельство наличия в них леггемоглобина) и существенно варьировали по размеру. Оба штамма повысили биомассу побегов и всего растения примерно на 70 % при выращивании на дерново-подзолистой почве и черноземе, но не повлияли на биомассу корней. Инокулированные растения обладали примерно одинаковой нитрогеназной активностью независимо от штамма ризобий и типа почвы. Удельная нитрогеназная активность (на единицу биомассы клубенька) была примерно в 2 раза выше по сравнению с другими вариантами при инокуляции растений штаммом B. retamae RCAM05275 в дерново-подзолистой почве. Во всех вариантах опыта в побегах инокулированных растений выявлено повышение содержания общего азота примерно в 1,4 раза и накопления азота - в 3-4 раза. Таким образом, оба изученных штамма оказались способны формировать азотфиксирующий симбиоз, что привело к значительному росту биомассы растений и накоплению азота в побегах. Результаты показали перспективность дальнейших исследований по испытанию штаммов в полевых экспериментах с целью создания биопрепаратов для улучшения азотного питания этой сельскохозяйственной культуры.

Бесплатно

Ядовитые растения и фитотоксикозы у лошадей (обзор)

Ядовитые растения и фитотоксикозы у лошадей (обзор)

Ксенофонтова А.А., Буряков Н.П., Ксенофонтов Д.А., Косолапова В.Г.

Статья обзорная

Большое количество растений содержат химические соединения (фитотоксины), которые оказывают негативное воздействие на организм животных (Е.М. Куренкова с соавт., 2018) и становятся одной из причин развития тяжелых патологических процессов. Фитотоксины разнообразны по видовому составу, распространению, способу действия и летальному эффекту. Отравление лошадей ядовитыми растениями - относительно частая ветеринарная проблема, которая может случиться в том случае, когда свежее растение попадает в организм животного на пастбище или когда растение загрязняет сено, силос и другой корм (F. Caloni с соавт., 2015). Токсичность растений также представляет собой серьезную проблему, поскольку отравление животных приводит к значительным экономическим потерям (L. Curtis с соавт., 2019). В зависимости от степени токсичности и количества съеденного растения эффект варьирует от легкого недомогания до нарушения деятельности как отдельных органов, так и систем органов, что может привести к гибели животного (M. Wickstrom с соавт., 2002). Отравление ядовитыми растениями сложно диагностировать и дифференцировать от других патологий, поскольку клинические признаки, как правило, не специфичны и могут наблюдаться при других заболеваниях (K.E. Panter с соавт., 2012). Сведения, отражающие реальную частоту случаев отравления лошадей растительными токсинами, скудны либо вообще отсутствуют из-за того, что в настоящее время не существует централизованной системы отчетности и контроля за ними (K. Welch, 2019). Несмотря на то, что большинство токсичных растений имеют неприятный для лошадей вкус, существует ряд факторов, повышающих риск отравления: влияние фазы вегетации на вкусовые качества некоторых ядовитых растения, дефицит корма на пастбище, попадание токсичных растений в сено, однообразная среда обитания, любопытство (F. Caloni с соавт., 2015). Разнообразие видов ядовитых растений и содержащихся в них фитотоксинов, а также появляющиеся новые сведения о природе развития некоторых патологий при их потреблении требуют постоянного информирования ветеринарных специалистов и владельцев животных. В обзоре перечислены наиболее распространенные на территории России виды растений, при поедании которых у лошадей диагностируются отравления разной степени тяжести. Указаны места произрастания ядовитых для лошадей растений, подробно описаны механизмы действия содержащихся в них токсичных веществ на организм животных и клинические эффекты, которые могут включать нарушения в деятельности пищеварительной, сердечно-сосудистой, выделительной, дыхательной и нервной системы и многие другие проявления. Ядовитые растения классифицированы по механизму действия токсичных веществ на группы, содержащие алкалоиды, нейротоксины, фотосенсибилизирующие вещества, цианогенные гликозиды и сердечные гликозиды (M.I. San Andrés Larrea с соавт., 2024). Показана необходимость тщательного контроля за ботаническим составом пастбищных угодий и сена, а также исключения возможности случайного потребления лошадьми ядовитых растений.

Бесплатно

Журнал