Статьи журнала - Siberian Aerospace Journal

Все статьи: 352

Magnetoimpedance in thulium manganese chalcogenide

Magnetoimpedance in thulium manganese chalcogenide

Kharkov A.M., Sitnikov M.N., Aplesnin S.S.

Статья научная

Control of transport characteristics under the influence of a magnetic field is promising from the point of view of creating magnetic field sensors resistant to radiation. The impedance and its components in thulium manganese chalcogenide in the frequency range of 102–106 Hz are studied. The temperature range with a prevailing contribution of the reactive and active parts of the impedance is found. The impedance components are described in the Debye model. When manganese is replaced by thulium ions, the frequencies of the maxima of the imaginary component of the impedance shift toward high frequencies in manganese selenide by two orders of magnitude. With an increase in the concentration of substitution by thulium ions in selenides, two relaxation times are found, compared with sulfides. The activation nature of the relaxation time, the activation energy from the concentration of thulium ions are found. An increase in impedance in a magnetic field in the region of low concentrations and a change in the sign of the impedance with temperature for high concentrations are established. Magnetoimpedance in chalcogenides passes through a maximum when heating the samples. The increase in impedance in a magnetic field is due to a change in the diagonal component of the permittivity in a magnetic field, which is proportional to the conductivity. A positive value of magnetoimpedance is described in the model of an electrically inhomogeneous medium. From the impedance, information can be obtained about the electrical inhomogeneity of the material.

Бесплатно

Managing a group of objects as a task of system analysis

Managing a group of objects as a task of system analysis

M. E. Kornet, A. V. Medvedev, D. I. Yareshchenko

Статья научная

In this paper, we consider the general statement of the problem of identification and management of a group of objects. A group refers to several objects combined for the manufacture of a product. The main feature is that when managing such systems, it is necessary to change the setting actions for each object. This is due to the fact that today the technological regulations in many cases are wider than they should be for good operating. This is a consequence of the fact that the current production culture (this, in particular, has been shown by the experience of processing data from the technological process for the production of transis-tors at Svetlana) is rather low, which leads to some organizational problems. It is clear that it is necessary to have certain models of objects that naturally differ from each other and can be considered under conditions of both parametric and nonparametric uncertainty. Moreover, there may be cases when an object is considered simultaneously under conditions of both parametric and nonparametric uncertainty over various channels. Now, regarding the delay, due to the fact that the measurement of some variables is carried out in a significantly long-er time interval than the object constant, it is necessary to distinguish the time of measuring technological vari-ables and, in fact, the delay typical to the process itself, taking into account the difference between the channels. This leads to the fact that dynamic processes are essentially forced to be considered as inertialess with delay. Another significant feature is that the components of the output variables are stochastically dependent in ad-vance in an unknown manner. The use of correlation or dispersion relations in this case does not lead to success. A special analysis of T-processes and the ability to simulate such processes are required. In particular, this is one of the tasks of this article. It contains: T-processes, T-models and the corresponding heterogeneous control algorithms. The process of hydrodeparaffinization of diesel fuel is considered according to available data, which can be said a priori that they are incomplete, that is they do not reflect the complex behavior of the pro-cess. From here it follows that these data require replenishment, which today is not carried out for various rea-sons. Thus, the process of hydrodewaxing can be taken to the T-process. Modeling a multidimensional system based on real data has shown that in this problem the presetting effect for different objects should be different. The exception is only the setting actions for the entire complex or group of objects. Modeling was carried out on the basis of T-models considered in the article. It has already been not-ed that these models should not be taken as complete, giving an idea of reality. They will be subject to algorith-mic refinement during further research. The decision is made by the researcher. At this stage that an assessment is given that, under the circumstances, the resulting models and control algorithms can be adopted for use in a production environment. An attempt to use the existing theory of identification and control for the process of hydrodewaxing will inevitably lead to a significant degradation and increase in the cost of a computer system for operating the quality of this process.

Бесплатно

Mathematical model of a linear electrodynamic engine operation on impact with account for elastic deformation of the hardened surface

Mathematical model of a linear electrodynamic engine operation on impact with account for elastic deformation of the hardened surface

Shvaleva N. A., Fadeev A. A., Eresko T. T.

Статья научная

Operational characteristics of contacting elements of cars and mechanisms are by far defined by a layer quality indicators at the surfaces of contact. One of the ways of increasing details durability, including missile and space equipment details, is the superficial plastic deformation (SPD). In the article aspects of dynamic ways of hardening from the position of the wave theory of blow are considered. The construction of a shock stand on the basis of a linear electrodynamic drive with a size of 60 mm, operating in a shock-pulse mode, as well as a well-known mathematical model of the workflow – the movement of the armature with the tool at the moment of striking the surface. This model does not fully describe the operation process since the mass of the striker taken into account equaled 1 kg, which does not characterize the process of the impact tool, the purpose of which is the object deformation (for example, work hardening with the aim of surface material sealing or breakdown of the hole in it, or applying license plates markers). The mathematical model that describes the movement of the armature with the tool, taking into account the elastic deformation of the hardened surface was obtained. In the course of the performed calculation, the magnitude of the elastic deformation of the hardened surface was calculated from the dynamic component of the force impulse applied to it through the indenter (the tip of the impact tool). The layout of the shock stand with the equipment used, are offered. Experiments on the signal recording with various arrangements of piezoelectric transducers on the anvil – the hardened surface (diagrams of the sensors location are given) were carried out.

Бесплатно

Mathematical model of reliability of information processing computer appliances for real-time control systems

Mathematical model of reliability of information processing computer appliances for real-time control systems

A. V. Aab, P. V. Galushin, A. V. Popova, V. A. Terskov

Статья научная

One of the main characteristics of computer appliances for processing real-time information is reliability. The reliability of software is understood as the property of this software to perform specified functions, maintaining its characteristics within the established limits under certain operating conditions. Software reliability is determined by its reliability and recoverability. Reliability of software is a property to maintain its performance when using it for processing information in the information system. The reliability of the software is estimated by the probability of its operation without failures under certain environmental conditions during a given observation period. The development of real-time systems requires a large amount of resources for design and testing. One of the solutions to this problem is mathematical modeling of computer appliances. This allows more flexible design of real-time systems with the specified reliability, taking into account the limitations on price and development time, and also opens the possibility of more flexible optimization of computer appliances for real-time control systems. To develop a mathematical model of the reliability of computer appliance for real-time systems, it is necessary to take into account the provision of a given level of reliability, with reasonable development costs. There are many methods for improving software reliability, but the most promising and effective methods are redundancy, which is achieved using N-version programming. To increase the reliability of the hardware of the computer appliance, it is also necessary to use redundancy and redundancy, which includes multiprocessor and provision of different buses and independent RAM. This paper discusses existing approaches to improving the reliability of hardware and software, proposes a model of reliability of a computer appliance, which is understood as the product of the probability of failure-free operation of hardware and the probability of error-free operation of software. In addition, new formulas are proposed for the steady state probabilities of the hardware states of a multiprocessor computer appliance with heterogeneous processors, which give the same result as the existing ones, but require fewer computations. The paper concludes with a question about the possibility of optimizing the reliability of computer appliances based on the developed model, and indicates optimization methods that can be used to solve this problem.

Бесплатно

Mathematical model of the mirror system of the Millimetron observatory and a description of the method of pre-measurement of the telescope within this model

Mathematical model of the mirror system of the Millimetron observatory and a description of the method of pre-measurement of the telescope within this model

Makarov S. N., Verhoglyad A. G., Stupak M. F., Ovchinnikov D. A., Oberemok J. A.

Статья научная

A mirror geometry control system for the Millimetron Observatory is being created to work as part of the on-board complex of scientific equipment. The system is designed to monitor the quality of the space telescope’s mirror system and use the data received as feedback signals for pre-setting and tuning the telescope’s optical system in outer space. The goal of the system is estimation of the multidimensional vector of unknown parameters of the telescope’s mirror system by indirect measurements obtained as a result of the measurement of the telescope by 3D scanning. A mathematical model has been created, numerically describing the process of pre-measurement of the mirror system of the Millimetron Observatory using optical control marks on the surface of the mirror system. The linear mathematical model allows to link the actual indirect measurements of the mirror system with the unknown biases of its parameters, determining the shape of the telescope. A formula has been developed for the optimal reverse problem solver in the process of pre-measurement of the mirror system. The method of measuring the components of the telescope as part of its pre-setting is described. The measurement of control marks is based on a onboard 3D scanner embedded in the design of the mirror system control system. The error analysis was carried out using the optimal solver, and a covariance matrix was obtained for the error vector of estimated parameter.

Бесплатно

Mathematical model of thermophysical loading of a small-caliber artillery barrel with variant discretization of half-integer layers of the computational domain

Mathematical model of thermophysical loading of a small-caliber artillery barrel with variant discretization of half-integer layers of the computational domain

Podkopaev I.A., Podkopaev A.V., Dolzhikov V.I.

Статья научная

In the conditions of continuous financing of the programs of the Ministry of defense of the Russian Federation, the question of finding the most effective ways to modernize weapons and military (special) equipment, the developments in which are maximum and the processes of their improvement can take no more than a few years, is particularly acute. Such products, in particular, include aviation artillery weapons (AAO), the prospects for the use of which remain for the entire period of the army's existence with conventional weapons. The main factor influencing the quality of the AAO functioning is considered to be the thermophysical loading of a small-caliber artillery barrel (hereinafter referred to as the barrel) during firing. The problem of increasing the accuracy of determining the temperature field of the barrel is again updated by tightening the conditions for striking targets. Issues closely related to the intensification of AAO application regimes have come to the fore. These are issues of heating, cooling, thermal strength, wear, barrel survivability, issues of safety and firing efficiency. Despite the methodological evidence of analytical and numerical approaches to formalizing heat transfer in the wellbore, their practical implementation is rather complicated. The physical and mathematical meaning of this reason is as follows: possible instability of solutions; manifestation of oscillations in areas of large gradients; simultaneous presence in the solution regions of supersonic, sonic and subsonic zones; the existence of laminar, turbulent flows and other non-linear formations; non-triviality of setting boundary conditions; the presence of thermal resistance of surfaces, etc. However, the practical needs of ensuring safety and increasing the efficiency of fire operation of AAO dictate the need to obtain a close approximation of the problem under consideration to its possibly existing exact analytical solution. The aim of the work is to improve the mathematical apparatus that simulates the temperature field of the shaft based on a combination of heat transfer methods and mathematical physics. By verifying the reliability of the developed mathematical model (hereinafter referred to as the model, if from the context of the presentation of the material it is clear that we are talking about the proposed tools), the facts of the absence of methodological errors in the formation of the constituent blocks of the model and the increase in the accuracy of determining the thermal loading of the wellbore by 9.4 % were established. Based on the accents of the stated problem, the directions for improving the model are argued.

Бесплатно

Mathematical modeling of autocompensation devices

Mathematical modeling of autocompensation devices

Katkova V.P., Vyakhirev V.A., Krintal A.N.

Статья научная

The article studies the order of developing and describing mathematical models of automatic compensation devices of all-round radar stations. The development of algorithms for spatial processing of signals in radar systems with phased antenna arrays is an important stage in the design of radar stations. This article considers the procedure to create mathematical models of automatic compensation devices that differ in implementation methods, namely: the number of compensation channels, the position of the main and compensation (additional) channels of the radar station (stationary or dynamic), the amplitude-phase distribution of the main and additional antennas, the representation phased antenna array, algorithms for finding the weight vector. The method of computational experiment verifies the adequacy of the operation of the models and the results are comparable with the implemented automatic compensation devices in radar stations. Presented in the form of graphs of the signal at the output of the automatic compensation device as well as the passage of the matched filter, the results of the computational experiment show effectiveness of the algorithm to calculate the weight vector; they permit to visually, quickly and economically compare the efficiency of the automatic compensation devices, depending on the method of their implementation. The article discusses the algorithm for the direct formation of the weight vector and the algorithm for the formation of the weight vector through the inverse correlation whitening matrix. Mathematical models of automatic compensation devices and the results of a computational experiment can be used to train future specialists who develop and operate radar stations.

Бесплатно

Mathematical modeling of the flat ingot casting process for solving automation problems

Mathematical modeling of the flat ingot casting process for solving automation problems

Novikov V.A., Piskazhova T.V., Doncova T.V., Belolipetskii V.M.

Статья научная

Aluminum alloys are widely used in the production of aircraft due to their strength, lightness, corrosion resistance, and necessary electrical conductivity. At the same time, aluminum ingots used in further processing of the space industry must be of high quality. Technological problems and defects arise when temperature, speed, and other technological parameters of casting are not observed, or when modes change. At the same time, foundry processes are partially automated; the human factor significantly affects product quality and work safety. Therefore, automation of these complex processes using mathematical models to predict casting parameters is an urgent task. The goal of the work is to create mathematical models available for use in automated process control systems (APCS), as well as for the development of a digital twin. The work presents simplified formulas for modeling the temperature distribution of an aluminum ingot during the casting process, cooling the metal when moving along a metal path, and test calculations of the temperature distribution inside the ingot when the ingot reaches a fixed length. The results of this work can be used to improve the efficiency and accuracy of controlling the process of casting aluminum ingots, to eliminate emergency situations.

Бесплатно

Mathematical modeling of the technological process of improving the quality of polymeric products of machine-building purposes

Mathematical modeling of the technological process of improving the quality of polymeric products of machine-building purposes

Larchenko A. G, Filippenko N. G., Livshits A. V.

Статья научная

In this scientific work, a method of controlling high-frequency products from polymeric composite materials is considered. The authors of the work present the rationale for choosing a method of high-frequency diagnostics as the most suitable for non-destructive testing of products from polymeric materials of machine-building and rocket-space purposes. In the presented article, the primary task of creating and studying a mathematical model of the effect of highfrequency radiation on a polymer product, including those with a “metallic inclusion” defect, has been stated and solved. In addition, the work presents the calculations of diagnostic parameters using the mathematical model developed during the study. The calculation of the dynamics of heating the product and the temperature distribution during the control process is presented. The results of the calculation of specific power are described, the dependence of the instantaneous power consumption on the warm-up time is found. In the study based on a mathematical model, the Aleo- Diagnost software package was developed and registered, which is directly intended to ensure the functioning of the diagnostic devices and the investigation of the monitoring process. In addition, the developed complex allows solving a number of such practical problems as the calculation of the operating voltage depending on the geometrical parameters of the product and the determination of the value of energy consumed for monitoring the product for a specified period of time. This stage was necessary, as the consumed energy is the main output parameter of the diagnosis. In addition, the value of energy consumed is taken as the basis for the organization of the process of non-destructive testing in the automated mode. The solution of the tasks in this work has significantly reduced the cost of preparation of diagnostic operations, as well as improve the quality of control of products on an industrial scale at the stages of manufacture, operation and during repair work. The article also presents practical results, conclusions.

Бесплатно

Measurement of temperature distribution using a three-wire system of sensors based on thermistors

Measurement of temperature distribution using a three-wire system of sensors based on thermistors

V. A. Derevyanko, A. V. Makukha

Статья научная

Improving the reliability and increasing the avionics resource is associated with possibility of continuous control of temperature fields of printed circuit boards. This problem can be solved only with the use of a large number of temperature sensors. It raises the problem of connecting the measuring elements and recording equipment. Several methods with their own advantages and disadvantages are proposed. One of the implemented and patented methods is using a set of resistive diode sensors installed in series on a threewire line. The temperature sensors are pairs of counter - connected diodes with a sequential survey when applying sawtooth voltage. The system is simple and easy to implement, but its main drawback is the method of determining the temperature by measuring the amplitude of the total reverse currents of diode pairs. It determines the large measurement errors, especially in the temperature range less than 20°C. The article deals with a similar design of a three-wire circuit, but with a fundamentally different approach to temperature measurement. The temperature sensor here is not diode pairs, but thermistors with a well-known dependence of resistance on temperature and high accuracy, and diode pairs record only the moment of coincidence of the sawtooth voltage with the voltage on the thermistors. This approach allows using mathematical methods of signal processing to accurately determine the voltage drop on the thermistor, and this ensures the accuracy of the resistance/temperature and the expansion of the temperature range. Given the fact that thermistors are increasingly used to measure temperature, simplifying their inclusion in a large number will allow to register the temperature field of electronic units, which is extremely important for spacecraft. The proposed version of a three-wire circuit for connecting temperature sensors at several points was tested experimentally, including at negative temperatures.

Бесплатно

Method for calculating the thermodynamic characteristics of a vortex ejector with known geometric dimensions

Method for calculating the thermodynamic characteristics of a vortex ejector with known geometric dimensions

Kuznetsov V.I., Makarov V.V.

Статья научная

Based on the previously compiled physical and mathematical model of the vortex ejector workflow, its solution was made. The solution of this model made it possible to compile two calculation methods: a method for calculating the optimal geometry of a vortex ejector for given thermodynamic characteristics and a method for calculating the thermodynamic characteristics of a vortex ejector with known geometric dimensions [1; 2]. Vortex ejectors are used in many areas of aerospace engineering. The compiled development of a method for calculating the thermodynamic characteristics of a vortex ejector with known geometric dimensions will make it possible to use vortex ejectors more widely in the aerospace industry. The calculation method is based on the concepts of tangential stresses arising in a viscous medium when two flows moving at different speeds interact. The mechanism of kinetic energy transfer from a high-energy gas to a low-energy one is shown.

Бесплатно

Method for forming multi-dimensional data in the information financial and economic system at the enterprise of state space corporation “Roscosmos”

Method for forming multi-dimensional data in the information financial and economic system at the enterprise of state space corporation “Roscosmos”

Kartamyshev A.S., Chernysh B.A., Murygin A.V.

Статья научная

The construction of detailed accounting that allows to generate complex analytical reporting is an in-dispensable requirement of a modern financial system. For enterprises of the State Space Corporation “Roskosmos” with custom-made and small-scale production, operating in the conditions of Federal Law No. 275, characterized by a large amount of R&D and a high degree of uncertainty in the process of creat-ing products, this task is a system-forming one. The reporting should contain consistent data in any area of management and accounting at any given time. Along with this, system must provide the flexibility, reliabil-ity and performance inherent in transactional databases. To build information support that satisfies the specified conditions, it is required either to separate OLTP and OLAP data schemes, or to apply special-ized solutions based on the use of structures and techniques optimized for performing OLAP operations in traditional RDBMSs. This article considers the approach to form the multidimensional data in an automat-ed management system for economic tasks, as an effective alternative to complex and expensive BI solu-tions. Unlike many commercial systems, the ASU FEZ does not store redundant data (for example, opera-tional accounting registers in the 1C: Enterprise platform) required to build analytical accounting. The underlying data structures and methods of their processing allow for all types of accounting and have pow-erful tools for constructing analytical reporting. The article proposes algorithms for the operation of the system using the example of building simple OLAP cubes used in real tasks of automating financial and economic activities in ISS JSC for one of the Purchase subsystems. The formalization of these problems is carried out, the mathematical apparatus for constructing multidimensional data models based on infor-mation from a fixed set of normalized tables of a relational database is considered.The examples of SQL queries and outputs are provided. The advantages of using the system in operational management and accounting at the enterprise increasing its operational efficiency are summarized.

Бесплатно

Method for processing the results of cavitation tests of TNA pumps in order to obtain an approximating function

Method for processing the results of cavitation tests of TNA pumps in order to obtain an approximating function

Torgashin A.S., Zhujkov D.A., Nazarov V.P., Begishev A.M.

Статья научная

When designing rocket engines, the problem of providing the specified basic design parameters is solved. In connection with the increase in requirements for products of rocket and space technology, the requirements for ensuring the energy efficiency of all its constituent elements are also increasing. As a rule, the task of increasing the energy characteristics of a rocket engine is carried out by increasing the pressure in the combustion chamber and the rotational speed of the turbopump shaft. An increase in the rotational speed of the shaft of a turbopump unit requires the provision of a cavitation-free operation of the pump with the absence of cavitation breakdown. This problem can be solved in various ways: by constructive improvement of the pump or by increasing the pressure parameter at the pump inlet. However, too much increase in inlet pressure is not possible, as this will increase the thickness of the walls of the rocket's fuel tanks and a corresponding increase in the mass of the entire rocket. Turning on the screw, although it does not guarantee cavitation-free operation at any inlet pressure, is the most preferred method. The geometry of the bore part of both the screw prepump and the pump blades is designed to ensure non-cavitational operation. When designing, at the stage of experimental testing of pump modes, it is pos-sible to use the methods of computational fluid dynamics (Computational Fluid Dynamics, CFD). These methods are used in various areas of general engineering and have proven themselves well. However, the rocket motor pump has a high pressure drop with relatively small dimensions. The question arises of adapt-ing CFD methods to modeling cavitation tests. This work is aimed at deriving a function approximating the TPU test data set with a view to its further adaptation for CFD methods.

Бесплатно

Method of equivalent strength conditions in calculations of bodies with inhomogeneos regular structure

Method of equivalent strength conditions in calculations of bodies with inhomogeneos regular structure

А. D. Matveev

Статья научная

Plates, beams and shells with a non-uniform and micro-uniform regular structure are widely used in aviation and rocket and space technology. In calculating the strength of elastic composite structures using the finite element method (FEM) it is important to know the error of the approximate solution for finding where you need to build a sequence of approximate solutions that is connected with the procedure of crushing discrete models. Implementation of the procedure for grinding (within the micro-pass) discrete models of composite structures (bodies) requires large computer resources, especially for discrete models with a microinhomogeneous structure. In this paper, we propose a method of equivalent strength conditions (MESC) for calculating elastic bodies static strength with inhomogeneous and microinhomogeneous regular structures, which is implemented via FEM using multigrid finite elements. The calculation of composite bodies’ strength according to MESC is limited to the calculation of elastic isotropic homogeneous bodies strength using equivalent strength conditions, which are determined based on the strength conditions set for composite bodies. The MESC is based on the following statement. For all composite bodies V0 , which are such a homogeneous isotropic body V b and the number of p , if the safety factor nb of the body Vb satisfies the equivalent conditions of strength 2 pn1(1 ) nb (1 ) pn2 (1 ) , the safety factor n0 of the body V0 meets the defined criteria for strength n1 n0 n2 , where n1 , n2 specified, the safety factor n0 ( nb ) complies with the accurate (approximate) solution of elasticity theory problem is built for body V0 (body Vb ); (n2 n1) / (n2 n1) ; is the upper b error estimation of the maximum equivalent body stress V b , corresponding to approximate solution. When constructing equivalent strength conditions, i. e when finding the equivalence p coefficient, a system of discrete models is used, dimensions of which are smaller than the dimensions of the basic composite bodies models. The implementation of MESC requires small computer resources and does not use procedures for grinding composite discrete models. Strength calculations for bodies with a microinhomogeneous structure using MESC show its high efficiency. The main procedures for implementing the MESC are briefly described.

Бесплатно

Methodological principles for the formation of a number of unified space communication satellite platforms

Methodological principles for the formation of a number of unified space communication satellite platforms

Chebotarev V.E., Zimin I.I., Vnukov A.A., Shangina E.A.

Статья научная

This article formulates the topical problem of formalizing the methodological principles of the search for a compromise between properties repeatability and modification (novelty) for the new models of space technology – communication satellites. The main methodological principles of development continuity are the unification of products and their component parts, means of technological equipment and technological processes, which allows to reduce their diversity and nomenclature. The order of the nomenclature of the articles and their component parts is achieved by developing parametric and type-size series with rationally chosen intervals between the adjacent members of the series according to a complex criterion, a link to the target product performance with the cost of creating the product. The research develops a project model and defines criteria for selecting the size type of a universal space platform. In designing a new spacecraft on the basis of a unified space platform (USP), there is a need to refine it to meet the resource requirements of the new payload (mass and energy consumption). The article sets out the methodological principles for assessing the range of effective applications of the universal space platform for the two most extreme cases of resource requirements (by mass and energy consumption) of the payload: the resources of the platform are excessive or insufficient. Methodological principles have been developed to form a number of unified space platforms. Using the methodological principles for the formation of a series of unified space platforms, the effectiveness ranges of USP were evaluated and the completeness of a number of geostationary communication satellites developed by “ISS” was assessed.

Бесплатно

Methodological principles of space vehicle design for the maximum energy supply of the payload

Methodological principles of space vehicle design for the maximum energy supply of the payload

Chebotarev V.E., Fatkulin R.F., Vorontsova E.O., Shangina E.A., Balandina T.N.

Статья научная

The design of spacecraft at the initial stages is carried out in the presence of uncertainties in terms of parameters and conditions. The determination of design parameters is performed step by step: determination of the nominal values of design parameters, normalization of resource reserves (mass, volume, energy consumption) according to the design parameters to parry uncertainties, designing spacecraft for marginal resources. The operation of spacecraft with an electrical load switched on includes several stages: launching into the target orbit, putting into regular operation, regular operation for the intended purpose, decommissioning from the intended use in case of emergencies. The power supply system is designed to provide uninterrupted autonomous power supply to the onboard equipment in all modes and at all stages during the period of active existence of spacecraft, taking into account the presence of shadow zones of the orbit from the Earth and the Moon. In this article, the methodological principles for designing spacecraft for the maximum power supply of payload in the presence of uncertainties in parameters and conditions are developed. The mathematical models for calculating the parameters of the energy balance of spacecraft have been developed for various options for realizing the power of the session load, depending on the level of illumination of the orbit and the period of operation of spacecraft. The effectiveness of using the methodological principles of designing spacecraft for the maximum power supply of the payload, depending on the level of illumination of the orbit and the period of operation of spacecraft, has been evaluated. A technique has been developed for rationing reserves by spacecraft energy resources to parry uncertainties in terms of parameters and conditions, as well as the principles of its application when designing spacecraft for maximum payload power supply.

Бесплатно

Methodology for assessing reliability of stand-bed systems in testing liquid throat engines

Methodology for assessing reliability of stand-bed systems in testing liquid throat engines

V. P. Nazarov, V. Yu. Piunov, A. I. Kolomentsev, V. G. Yatsunenko, K. F. Golikovskaya

Статья научная

In the process of design processing of low thrust rocket engines great attention is paid to special bench test methodologies, technical use of benches, simulation measurements of the physical conditions of outer space, as well as the use of diagnostic studies and equipment for various physical studies and measurements. The efficiency of ground (bench) testing is ensured by simulating the conditions of full-scale tests and taking into account the influence of all operational factors affecting the reliability of the assessment of reliability indicators during design testing in ground conditions. A special place in the issues of achieving test efficiency is occupied by the requirements to ensure the accuracy and reliability of test results. A significant amount of testing during the development of engines should be carried out under the required vacuum conditions on test benches equipped with pressure chambers with vacuum systems. As a result of failures of some elements of a complex bench system, the quality of functioning deteriorates and the probability of successful performance of the functions that determine the output effect of the system decreases. Therefore, the task of evaluating the reliability of the systems of the stand for firing tests of rocket engines is reduced to elucidating the effect of element failures on the quality of operation and the output effect of each system. When testing, the given conditions must unambiguously determine the technical characteristics of the test stand, including the pressure chamber and vacuum equipment. Tests must be carried out with a sufficient degree of certainty. When assessing the dynamic characteristics in pulsed modes, significant errors are introduced by inertial forces. Methods for ensuring the dynamic similarity of the characteristics of the engine supply systems with fuel components on the stand and as part of the propulsion system of the spacecraft, including the correspondence of the hydraulic, inertial and wave characteristics of the mains, are considered. An analysis of the errors in the test results was carried out. The tasks of the methodology for calculating instrumental errors are formulated. An assessment of the frequency characteristics of bench hydraulic lines was carried out. Recommendations have been developed to improve the accuracy of measuring parameters during bench firing tests of low-thrust rocket engines.

Бесплатно

Methodology for calculating the de-weighting system of large-sized transformable elements of space vehicles for ground tests

Methodology for calculating the de-weighting system of large-sized transformable elements of space vehicles for ground tests

Belyaev A. S., Filipas A. A., Tsavnin A. V., Tyryshkin A. V.

Статья научная

This paper considers the methodology for calculating the de-weighting system of spacecraft elements for ground tests, taking into account the deployment options, de-weighting conditions, types and options of de-weighting systems. An example of calculation for a 3-section solar battery without a beam with incomplete de-weighting and with minimization of moments in the hinges is given. Genetic algorithms are used as an algorithm for determining the parameters of the de-weighting system, which allows obtaining the minimum moments in the hinges. The moments and forces acting in the system were checked by plotting diagrams in the expanded state. In addition, a check for compliance with the specified distance, based on design constraints, between the points of application of the weighting forces was made.

Бесплатно

Methods and tools for information visualization on the basis of attributed hierarchical graphs with ports

Methods and tools for information visualization on the basis of attributed hierarchical graphs with ports

Kasyanov V.N.

Статья научная

At present visualization of graph models is an inherent part of the processing of complex information about the structure of objects, systems and processes in many applications in science and technology, and at the market there are widely presented science-intensive software products, using the information visualization on the basis of graph models. Since the information to visualize is constantly growing and becoming more complex, more and more situations are arising, where classical graph models cease to be adequate. More powerful graph-theoretic formalisms are required and appear to represent information models with a hierarchical structure, since hierarchy is the basis of numerous methods for visual processing of complex big data in various fields of application. One of these formalisms is the so-called hierarchical graphs. This formalism allows to select a set of such its parts (so-called fragments) in the given classical graph that all elements of each selected fragment deserve a separate joint consideration, and all fragments of the selected set form a nesting hierarchy. At the A. P. Ershov Institute of Informatics Systems, the Visual Graph visualization system was constructed, which is based on hierarchical graphs and allows to explore complex structured big data through their visual representations. In many applications, objects modeled by graph vertices are complex and contain non-intersecting logical parts (so-called ports) through which these objects are in a relationship modeled by arcs. In the paper, the formalism of attributed hierarchical graphs with ports is introduced and new possibilities of the Visual Graph system for visualization of large structured data based on attributed hierarchical graphs with ports are considered.

Бесплатно

Methods for constructing routes outside urban areas based on GPS data

Methods for constructing routes outside urban areas based on GPS data

Krutko D.A., Kalashnikov A.S., Buryachenko V.V.

Статья научная

Route constructing methods include the task of finding the shortest trajectory between two or more ob-jects, which may vary depending on weather conditions, altitude coordinates, and other parameters. The methods discussed in the article allow constructing routes using GPS tracks for various fields of knowledge: designing routes within a city, region, country, or with remote sensing of the earth. The consid-ered algorithms are used in the field of environmental monitoring in emergency situations, to search for optimal data transmission routes in satellite systems and their validation, as well as in organizational and economic systems. The most widely used approaches for constructing routes are graph theory and search in the state space, where any trajectory between objects is given its own weight. However, there is still no system that allows to make a tourist route over rough terrain. The article discusses such methods as the Dijkstra, Levit, Floyd-Warshell algorithm, and it also compares their effectiveness in terms of running time and complexity. The aim of the work is to develop an algorithm for finding the shortest path and building a tourist route from a given point A to point B. This development will open up new opportunities for citizens to independently visit new interesting areas, actively spend their free time and get to know the surroundings of the city. The system has been tested on the territory of the Torgashinsky ridge, includes more than 38 route points located at a distance of more than 25 kilometers, and allows to build the desired routes within less than 15 milliseconds. At the same time, the system enters person’s coordinates, which are considered when constructing routes.

Бесплатно

Журнал