International Journal of Intelligent Systems and Applications @ijisa
Статьи журнала - International Journal of Intelligent Systems and Applications
Все статьи: 1203

Cognitive Agents and Learning Problems
Статья научная
Goals, Operators, Methods, and Selection rules (GOMS) model is a widely recognised concept in Human-Computer Interaction (HCI). Since the initial idea, several GOMS techniques were developed that were used for analysis, differing in their form defined by the logical structure and prediction power. Through defined operators and methods and following the certain rules, the user can reach a specific goal. This work represents an effort to apply GOMS method in the field of artificial intelligence, specifically on a state-space search problems. Card, Morgan, Newman GOMS (CMN-GOMS) model has been chosen, since it represents ground-floor of the GOMS idea that solves the given task through a sequence of operators. Compared with the informed search algorithms for solving the given task, CMN-GOMS model gave better results. Moreover, it was shown that this model could be used in any other space motion problem in the natural environment. LEGO® MINDSTORMS® EV3 robot was used to demonstrate the application of GOMS model in real world pathfinding problems and as a test-bed for comparing proposed model with well-known search algorithms.
Бесплатно

Collaborative E-Learning Process Discovery in Multi-tenant Cloud
Статья научная
With the appearance of the COVID-19 pandemic, the practice of e-learning in the cloud makes it possible to: avoid the problem of overloading the institutions infrastructure resources, manage a large number of learners and improve collaboration and synchronous learning. In this paper, we propose a new e-leaning process management approach in cloud named CLP-in-Cloud (for Collaborative Learning Process in Cloud). CLP-in-Cloud is composed of two steps: i) design general, configurable and multi-tenant e-Learning Process as a Service (LPaaS) that meets different needs of institutions. ii) to fulfill the user needs, developpe a functional and non-functional awareness LPaaS discovery module. For functional needs, we adopt the algorithm A* and for non-functional needs we adopt a linear programming algorithm. Our developed system allows learners to discover and search their preferred configurable learning process in a multi-tenancy Cloud architecture. In order to help to discover interesting process, we come up with a recommendation module. Experimentations proved that our system is effective in reducing the execution time and in finding appropriate results for the user request.
Бесплатно

Collision-free Random Paths between Two Points
Статья научная
This paper proposes a collision-free path planning algorithm based on the generation of random paths between two points. The proposed work applies to many fields such as education, economics, computer science and AI, military, and other fields of applied sciences. Our work has spanned several phases, where in the first phase a novel computer algorithm to generate random paths between two points in space has been developed. The aim was to be able to generate paths between two points in real-time that cannot be predicted in advance. In the second phase, we have developed an ontology that describes the domain of discourse. The aim was two folds; firstly, to provide an optimized generation of best points that are closer to the target point. Secondly, to provide sharable, reusable ontological objects that can be deployed to other projects. We reinforced our solution by the initiation of several case studies that have been designed using and extending our work. One problem that we have faced in some cases is the existence of some obstacles between the starting and the ending point. For example, in our work towards the automation of a navigation system for drones, we faced some obstacles like trees, no flying zones, and buildings. This problem is also applicable to mobile robots and other unmanned vehicles, where fee-collision mobility is necessary. In this phase, we have reworked the algorithm to generate random paths between two points P0(x0, y0), Pn(xn, yn) with obstacles. Our generated random paths are placed within circles that are centered in Pn: c1, c2, …, cn-1, which passes thru the points P1, P2, …, Pn-1 respectively. Point Pi may approach Pn if it takes any position within circle c centered in Pn with radius PiPn and satisfies some constraints, discussed in detail in the paper, which insure that the selected paths do not fall within obstacles and reach the target point. we also classified the generated paths based on given properties such as the longest path, shortest path, and paths with some given costs. The resulted algorithms were very encouraging and leading to the applicability of real-life cases.
Бесплатно

Colonial Competitive Optimization Sliding Mode Controller with Application to Robot Manipulator
Статья научная
One of the best nonlinear robust controllers which can be used in uncertain nonlinear systems is sliding mode controller (SMC), but pure SMC results in chattering in a noisy environment. This effect can be eliminated by optimizing the sliding surface slope. This paper investigates a novel methodology in designing a SMC by a new heuristic search, so called "colonial competitive algorithm "in order to tune the sliding surface slope and the switching gain of the discontinuous part in SMC structure. This process decreases the integral of absolute errors which results in tracking the desired inputs by the outputs in designing a controller for robot manipulator. Simulation results prove that the optimized performance obtained through CCA significantly reduces the chattering phenomena and results in better trajectory tracking compared to typical trial and error methods.
Бесплатно

Color Local Binary Patterns for Image Indexing and Retrieval
Статья научная
A new algorithm meant for content based image retrieval (CBIR) is presented in this paper. First the RGB (red, green, and blue) image is converted into HSV (hue, saturation, and value) image, then the H and S images are used for histogram calculation by quantizing into Q levels and the local region of V (value) image is represented by local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. LBP extracts the information based on distribution of edges in an image. Two experiments have been carried out for proving the worth of our algorithm. It is further mentioned that the database considered for experiments are Corel 1000 database (DB1), and MIT VisTex database (DB2). The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP on RGB spaces separately and other existing techniques.
Бесплатно

Color and Local Maximum Edge Patterns Histogram for Content Based Image Retrieval
Статья научная
In this paper, HSV color local maximum edge binary patterns (LMEBP) histogram and LMEBP joint histogram are integrated for content based image retrieval (CBIR). The local HSV region of image is represented by LMEBP, which are evaluated by taking into consideration the magnitude of local difference between the center pixel and its neighbors. This LMEBP differs from the existing LBP in a manner that it extracts the information based on distribution of edges in an image. Further the joint histogram is constructed between uniform two rotational invariant first three LMEBP patterns. The color feature is extracted by calculating the histogram on Hue (H), Saturation (S) and LMEBP histogram on Value (V) spaces. The feature vector of the system is constructed by integrating HSV LMEBP histograms and LMEBP joint histograms. The experimentation has been carried out for proving the worth of our algorithm. It is further mentioned that the databases considered for experiment are Corel-1K and Corel-5K. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to previously available spatial and transform domain methods on their respective databases.
Бесплатно

Combining Different Approaches to Improve Arabic Text Documents Classification
Статья научная
The objective of this research is to improve Arabic text documents classification by combining different classification algorithms. To achieve this objective we build four models using different combination methods. The first combined model is built using fixed combination rules, where five rules are used; and for each rule we used different number of classifiers. The best classification accuracy, 95.3%, is achieved using majority voting rule with seven classifiers, and the time required to build the model is 836 seconds. The second combination approach is stacking, which consists of two stages of classification. The first stage is performed by base classifiers, and the second by a meta classifier. In our experiments, we used different numbers of base classifiers and two different meta classifiers: Naïve Bayes and linear regression. Stacking achieved a very high classification accuracy, 99.2% and 99.4%, using Naïve Bayes and linear regression as meta classifiers, respectively. Stacking needed a long time to build the models, which is 1963 seconds using naïve Bayes and 3718 seconds using linear regression, since it consists of two stages of learning. The third model uses AdaBoost to boost a C4.5 classifier with different number of iterations. Boosting improves the classification accuracy of the C4.5 classifier; 95.3%, using 5 iterations, and needs 1175 seconds to build the model, while the accuracy is 99.5% using 10 iterations and requires 1966 seconds to build the model. The fourth model uses bagging with decision tree. The accuracy is 93.7% achieved in 296 seconds when using 5 iterations, and 99.4% when using 10 iteration requiring 471 seconds. We used three datasets to test the combined models: BBC Arabic, CNN Arabic, and OSAC datasets. The experiments are performed using Weka and RapidMiner data mining tools. We used a platform of Intel Core i3 of 2.2 GHz CPU with 4GB RAM. The results of all models showed that combining classifiers can effectively improve the accuracy of Arabic text documents classification.
Бесплатно

Comparative Analysis of ANN based Intelligent Controllers for Three Tank System
Статья научная
Three tank liquid level control system plays a significant role in process industries and its behavior is nonlinear in nature. Conventional PID controller generally does not work effectively for such systems. This paper deals with the design of three intelligent controllers namely model predictive, model reference and NARMA-L2 controllers based on artificial neural net-works for a three tank level process. These controllers are simulated using MATLAB/SIMULINK. The performance indices of intelligent controllers are compared based on the time domain specifications. The performance of NN predictive controller shows superiority over other controllers in terms of settling time.
Бесплатно

Статья научная
This paper proposes an advanced pitch angle control strategy based on neural network (NN) for variable speed wind turbine. The proposed methodology uses Radial Basis Function Network (RBFN) and Feed-forward based Back propagation network (BPN) algorithm to generate pitch angle. The performance of the proposed control technique is analyzed by comparing the results with Fuzzy Logic Control (FLC) and Proportional - Integral (PI) control techniques. The control techniques implemented is able to compensate the nonlinear characteristic of wind speed. The wind turbine is smoothly controlled to maintain the generator power and the mechanical torque to the rated value without any fluctuation during rapid variation in wind speed. The effectiveness of the proposed control strategy is verified using MATLAB/Simulink for 2-MW permanent magnet synchronous generator (PMSG) based wind energy conversion system.
Бесплатно

Comparative Study between ARX and ARMAX System Identification
Статья научная
System Identification is used to build mathematical models of a dynamic system based on measured data. To design the best controllers for linear or nonlinear systems, mathematical modeling is the main challenge. To solve this challenge conventional and intelligent identification are recommended. System identification is divided into different algorithms. In this research, two important types algorithm are compared to identifying the highly nonlinear systems, namely: Auto-Regressive with eXternal model input (ARX) and Auto Regressive moving Average with eXternal model input (Armax) Theory. These two methods are applied to the highly nonlinear industrial motor.
Бесплатно

Comparative Study of End-to-end Deep Learning Methods for Self-driving Car
Статья научная
Self-driving car is one of the most amazing applications and most active research of artificial intelligence. It uses end-to-end deep learning models to take orientation and speed decisions, using mainly Convolutional Neural Networks for computer vision, plugged to a fully connected network to output control commands. In this paper, we introduce the Self-driving car domain and the CARLA simulation environment with a focus on the lane-keeping task, then we present the two main end-to-end models, used to solve this problematic, beginning by Deep imitation learning (IL) and specifically the Conditional Imitation Learning (COIL) algorithm, that learns through expert labeled demonstrations, trying to mimic their behaviors, and thereafter, describing Deep Reinforcement Learning (DRL), and precisely DQN and DDPG (respectively Deep Q learning and deep deterministic policy gradient), that uses the concepts of learning by trial and error, while adopting the Markovian decision processes (MDP), to get the best policy for the driver agent. In the last chapter, we compare the two algorithms IL and DRL based on a new approach, with metrics used in deep learning (Loss during training phase) and Self-driving car (the episode's duration before a crash and Average distance from the road center during the testing phase). The results of the training and testing on CARLA simulator reveals that the IL algorithm performs better than DRL algorithm when the agents are already trained on a given circuit, but DRL agents show better adaptability when they are on new roads.
Бесплатно

Статья научная
There are various noisy non-linear mathematical optimization problems that can be effectively solved by Metaheuristic Algorithms. These are iterative search processes that efficiently perform the exploration and exploitation in the solution space, aiming to efficiently find near optimal solutions. Considering the solution space in a specified region, some models contain global optimum and multiple local optima. In this context, two types of meta-heuristics called Particle Swarm Optimization (PSO) and Firefly algorithms were devised to find optimal solutions of noisy non-linear continuous mathematical models. Firefly Algorithm is one of the recent evolutionary computing models which is inspired by fireflies behavior in nature. PSO is population based optimization technique inspired by social behavior of bird flocking or fish schooling. A series of computational experiments using each algorithm were conducted. The results of this experiment were analyzed and compared to the best solutions found so far on the basis of mean of execution time to converge to the optimum. The Firefly algorithm seems to perform better for higher levels of noise.
Бесплатно

Статья научная
Today, in computer science, a computational challenge exists in finding a globally optimized solution from an enormously large search space. Various meta-heuristic methods can be used for finding the solution in a large search space. These methods can be explained as iterative search processes that efficiently perform the exploration and exploitation in the solution space. In this context, three such nature inspired meta-heuristic algorithms namely Krill Herd Algorithm (KH), Firefly Algorithm (FA) and Cuckoo search Algorithm (CS) can be used to find optimal solutions of various mathematical optimization problems. In this paper, the proposed algorithms were used to find the optimal solution of fifteen unimodal and multimodal benchmark test functions commonly used in the field of optimization and then compare their performances on the basis of efficiency, convergence, time and conclude that for both unimodal and multimodal optimization Cuckoo Search Algorithm via Lévy flight has outperformed others and for multimodal optimization Krill Herd algorithm is superior than Firefly algorithm but for unimodal optimization Firefly is superior than Krill Herd algorithm.
Бесплатно

Статья научная
The concept of entropy as a measure of information has been extensively applied in information theory and related fields. The complex nature of information has resulted in some proposed entropy definitions. In image processing, the entropy concept has been used in developing thresholding techniques based on maximum entropy principles for image segmentation, enhancement and object detection purposes. In this article, entropy definitions are analysed to establish their relationship and after that evaluate their performance in image thresholding. Static simulated data from Electrical Capacitance Tomography measurement system for annular and stratified flows in multiphase hydrocarbons production has been used. Performance evaluation results of thresholding algorithms using Renyi entropy has shown to improve the measurements, particularly for stratified flow regimes. The improvement is solely based on the entropy definition, and it has been observed the introduced controlling parameters do not affect its performance. Renyi entropic thresholding algorithm is relatively robust as it is independent of the controlling parameter q and the grey level resolution. Therefore, there is the potential possibility of using Renyi entropic thresholding to improve measurements in hydrocarbons flow measurement using Electrical Capacitance Tomography measurement system.
Бесплатно

Статья научная
This paper presents an investigation of the convolutional neural network (CNN) with Word2Vec word embedding technique for text classification. Performance of CNN is tested on seven benchmark datasets with a different number of classes, training and testing samples. Test classification results obtained from proposed CNN are compared with results of CNN models and other classifiers reported in the literature. Investigation shows that CNN models are better suitable for text classification than other techniques. The main objective of the paper is to identify best-fitted parameter values batch size, epochs, activation function, dropout rates and feature maps values. Results of proposed CNN are better than many other classification techniques reported in the literature for Yelp Review Polarity dataset and Amazon Review Polarity dataset. For all the seven datasets, accuracy obtained by proposed CNN is close to the best-known results from the literature.
Бесплатно

Статья научная
In this era, face recognition technology is an important component that is widely used in various aspects of life, mostly for biometrics issues for personal identification. There are three main steps of a face recognition system: face detection, face embedding, and classification. Classification plays a vital role in making the system recognizes a face accurately. With the growing need for face recognition applications, the need for machine learning methods are required for accurate image classification is also increasing. One thing that can be done to increase the performance of the classifier is by tuning the hyperparameter. For this study, the evaluation performance of classification is conducted to obtain the best classifier among four different classifier algorithms (decision tree, SVM, random forest, and AdaBoost) for a specific dataset by tuning the hyperparameter. The best classifier is obtained by evaluating the performance of each classifier in terms of training time, accuracy, precision, recall, and F1-score. This study was using a dataset of 2267 facial data (128D vector space) derived from the face embedding process. The result showed that SVM is the best classifier with a training time of 0.5 s and the score for accuracy, precision, recall, and F1-score are about 98%.
Бесплатно

Comparing the Performance of Naive Bayes And Decision Tree Classification Using R
Статья научная
The use of technology is at its peak. Many companies try to reduce the work and get an efficient result in a specific amount of time. But a large amount of data is being processed each day that is being stored and turned into large datasets. To get useful information, the dataset needs to be analyzed so that one can extract knowledge by training the machine. Thus, it is important to analyze and extract knowledge from a large dataset. In this paper, we have used two popular classification techniques- Decision tree and Naive Bayes to compare the performance of the classification of our data set. We have taken student performance dataset that has 480 observations. We have classified these students into different groups and then calculated the accuracy of our classification by using the R language. Decision tree uses a divide and conquer method including some rules that makes it easy for humans to understand. The Naive Bayes theorem includes an assumption that the pair of features being classified are independent. It is based on the Bayes theorem.
Бесплатно

Comparison of New Multilevel Association Rule Algorithm with MAFIA
Статья научная
Multilevel association rules provide the more precise and specific information. Apriori algorithm is an established algorithm for finding association rules. Fast Apriori implementation is modified to develop new algorithm for finding frequent item sets and mining multilevel association rules. MAFIA is another established algorithm for finding frequent item sets. In this paper, the performance of this new algorithm is analyzed and compared with MAFIA algorithm.
Бесплатно

Comparison of Predicting Student’s Performance using Machine Learning Algorithms
Статья научная
Predicting the student performance is playing vital role in educational sector so that the analysis of student’s status helps to improve for better performance. Applying data mining concepts and algorithms in the field of education is Educational Data Mining. In recent days, Machine learning algorithms are very much useful in almost all the fields. Many researchers used machine learning algorithms only. In this paper we proposed the student performance prediction system using Deep Neural Network. We trained the model and tested with Kaggle dataset using different algorithms such as Decision Tree (C5.0), Naïve Bayes, Random Forest, Support Vector Machine, K-Nearest Neighbor and Deep neural network in R Programming and compared the accuracy of all other algorithms. Among six algorithms Deep Neural Network outperformed with 84% as accuracy.
Бесплатно

Статья научная
The Lighthill acoustic analogy equation is adopted to research noise distribution at dissimilarity positions and the variations are conducted based on the numerical verification of flow field under different turbulence models, time step sizes and meshes. The results showed the proposed computation method is reliable and practicable to obtain the complex flow parameters in the ramjet combustion chamber; Most of the noise is higherfrequency,and the differences in the near and far field are proven. In addition, noise laws are identical with the same horizontal position
Бесплатно