Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование @vestnik-susu-mmp
Статьи журнала - Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование
Все статьи: 806
Stochastic Leontieff-type equations with multiplicative effect in spaces of complex-valued «noises»
Статья научная
We consider a Leontieff-type stochastic equation, that is, a system of differential equations implicit with respect to the time derivative in the spaces of random processes. The concepts previously introduced for the spaces of differentiable «noise» using the Nelson-Gliklikh derivative carry over to the case of complex-valued «noise»; in addition, the right-hand side of the equation is subject to multiplicative effect of a special form. We construct a solution to the Showalter-Sidorov problem for Leontieff-type equations with multiplicative effect of a complex-valued process of special form. Aside from the introduction and references, the article consists of two parts. In the first part we carry over various concepts of the space of real-valued differentiable «noise» to the complex-valued case. In the second part we construct a Showalter-Sidorov solution to a Leontieff-type equation with multiplicative effect of a complex-valued process of special form. The list of references is not intended to be complete and reflects only the authors'' personal preferences.
Бесплатно
Stochastic inclusions with forward mean derivatives having decomposable right-hand sides
Краткое сообщение
In this paper, we prove a theorem on the existence of solutions for stochastic differential inclusions given in terms of the forward mean derivatives and the quadratic mean derivatives. These derivatives present information on the drift and the diffusion coefficient, respectively. The forward mean derivatives were introduced by E. Nelson for the needs of the so-called stochastic mechanics (a version of quantum mechanics), while the quadratic mean derivatives were introduced by Yu.E. Gliklich and S.V. Azarina. In the case of both the forward mean derivatives and the quadratic mean derivatives, we assume that the right-hand side is set-valued and lower semi-continuous, but not necessarily convex. Instead of this, we assume that the right-hand side is decomposable. Such inclusions naturally arise in many models of physical processes.
Бесплатно
Stochastic mathematical model of internal waves
Статья научная
The paper studies a mathematical model of internal gravitational waves with additive "white noise'', which models the fluctuations and random heterogeneity of the medium. The mathematical model is based on the Sobolev stochastic equation, Dirichlet boundary conditions and the initial Cauchy condition. The Sobolev equation is obtained from the assumption of the propagation of waves in a uniform incompressible rotation with a constant angular velocity of the fluid. The solution to this problem is called the inertial (gyroscopic) wave, since it arises due to the Archimedes's law and under the influence of inertia forces. By "white noise'' we mean the Nelson-Gliklikh derivative of the Wiener process. The study was conducted in the framework of the theory of relatively bounded operators, the theory of stochastic equations of Sobolev type and the theory of (semi) groups of operators. It is shown that the relative spectrum of the operator is bounded, and the solution of the Cauchy-Dirichlet problem for the Sobolev stochastic equation is constructed in the operator form.
Бесплатно
Stochastic model of optimal dynamic measurements
Краткое сообщение
Under consideration is the stochastic model of optimal dynamic measurements. To solve this problem, the theory of optimal dynamic measurements which has actively been developing for the deterministic problems is extended to the stochastic case. The main purpose of the model is to restore a dynamically distorted input signal from a given observation using methods of the theory of dynamic measurements and the optimal control theory for Leontief type systems. Based on the results obtained by the authors earlier it is shown that optimal dynamic measurement as a minimum point of the cost functional doesn't depend on stochastic interference such as resonances in chains and random interference at the output of measuring transducer.
Бесплатно
Strongly continuous operator semigroups. Alternative approach
Статья научная
Inheriting and continuing the tradition, dating back to the Hill-Iosida-Feller-Phillips-Miyadera theorem, the new way of construction of the approximations for strongly continuous operator semigroups with kernels is suggested in this paper in the framework of the Sobolev type equations theory, which experiences an epoch of blossoming. We introduce the concept of relatively radial operator, containing condition in the form of estimates for the derivatives of the relative resolvent, the existence of C 0-semigroup on some subspace of the original space is shown, the sufficient conditions of its coincidence with the whole space are given. The results are very useful in numerical study of different nonclassical mathematical models considered in the framework of the theory of the first order Sobolev type equations, and also to spread the ideas and methods to the higher order Sobolev type equations.
Бесплатно
Structural parametric modelling of an information-analytical system
Статья научная
We develop a method for studying relations between interior and exterior characteristics of an information-analytical system. As interior characteristics, we use the balance estimates accounting for conflict interactions among the elements. We solve the problem on assuming that the interior and exterior characteristics of the system are related. We justify the expediency of using the least squares method to find an explicit functional dependence among the characteristics. We develop a method for calculating the functional dependence in the case of a matrix representation of the values of characteristics basing on pseudoinverse matrices. A numerical example illustrates how the proposed method works in the structure parametric modeling of an information-analytical system in an internal affairs department.
Бесплатно
Studying the model of air and water filtration in a melting or freezing snowpack
Статья научная
The article is devoted to a theoretical study of a non-stationary problem on thermomechanical processes in snow taking into account the effects of melting and freezing. Snow is modeled as a continuous medium consisting of water, air and porous ice skeleton. The governing equations of snow are based on the fundamental conservation laws of continuum mechanics. For the one-dimensional setting, the Rothe scheme is constructed as an approximation of the considered problem and the Rothe method is formally justified, i.e., convergence of approximate solutions to the solution of the considered problem is established under some additional regularity requirements.
Бесплатно
Статья научная
In this paper we prove some new results on Sturm - Liouville abstract problems of the second order differential equations of elliptic type in a new non-commutative framework. We study the case when the second member belongs to a Sobolov space. Existence, uniqueness and optimal regularity of the strict solution are proved. This paper is naturally the continuation of the ones studied by Cheggag et al in the commutative case. We also give an example to which our theory applies.
Бесплатно
Supercomputer simulation of oil spills in the Azov Sea
Статья научная
We present the research on microbiological destruction of oil pollution in shallow water. In order to conduct the research, we use a multiprocessor computer system with distributed memory. The research takes into account the oil fractional composition as well as hydrodynamic and chemical-biological features of water. In order to simulate the dynamics of hydrocarbon microbiological degradation in the Azov Sea, we propose the complex of interrelated precision models. For model discretization, we use the space splitting schemes taking into account the partial filling cells of computational domain. Therefore, the computational accuracy significantly increases, while the computational time decreases. On supercomputer, we implement an experimental software for predictive modelling the ecological situation under oil and other pollution conditioned by natural and industrial challenges in shallow water.
Бесплатно
Synthesis of surface h-polarized currents on an unclosed cylindrical surface
Краткое сообщение
The article describes the inverse problem of diffraction of electromagnetic waves, finding surface H-polarized currents on an unclosed cylindrical surface according to a given radiation pattern. The work is based on modelling an operator equation with a small parameter. The operator is represented as the sum of a positive-definite, continuously invertible operator and a compact positive operator. The positive-definite operator exactly coincides with the main operator of the corresponding direct problem of diffraction of electromagnetic waves. Due to this fact, the solution to the simulated equation satisfies the necessary boundary conditions. And this is the novelty and difference of the approach developed in this work from the methods known in the scientific literature. We develop a theory of an operator equation with a small parameter and a numerical method based on Chebyshev polynomials with weights that take into account the behavior at the boundary. The efficiency of the numerical method is shown.
Бесплатно
System analysis of classification of prime knots and links in thickened surfaces of genus 1 and 2
Статья научная
In this paper, we present a system analysis of approaches to classification of prime knots and links in thickened surfaces of genus 1 and 2 obtained by the author in collaboration with S.V. Matveev and V.V. Tarkaev in 2012 - 2020. The algorithm of the classification forms structure of the present paper. The results of classification are considered within system analysis of the main ideas of key steps of the algorithm. First, we construct prime projections. To this end, we define a prime link projection, enumerate graphs of special type which embedding in the surface can be a prime projection, enumerate projections in the surface, and show that all obtained projections are prime and not equivalent using some invariants of projections. Second, we construct prime links. To this end, we define a prime link, construct a preliminary set of diagrams, use invariants of links to form equivalence classes of the obtained diagrams and show that the resulting diagrams are not equivalent, and prove primality of the obtained links. At that, at each step, the used methods and the introduced objects are characterized from viewpoints of two cases (genus 1 and 2), and we distinguish properties that are common for both cases or characteristics of only one of two cases. Note consolidated tables, which systematize the classified projections with respect to their properties: generative graph, genus, number of components and crossings, existence and absence of bigon that simplifies the further work with the proposed classification of projections and links.
Бесплатно
Table recognition technology in tax documents of the Russian Federation
Статья научная
This paper investigates the problem of cell recognition in the image of a table using the example of the Russian tax document (2-NDFL). Despite the simple structure of the tables, the printing method is based on a flexible template. The flexibility of the form is observed in the modifications of textual information and in the table area. The flexibility of tables lies in the modification of the number and size of columns. A structural method was proposed for table detection. The input data are the detected horizontal and vertical segments. Segments were searched by the Smart Document Reader system. Implementing and testing the method were also carried out in the Smart Document Reader system. In addition to detecting the area where tables can be placed, the following objectives were achieved: searching for table cells, naming table cells, and validating the table area. Validation of the table area was performed for separate tables and for table sets. The application of table aggregate descriptions showed the high reliability of linking table sets.
Бесплатно
The Barenblatt-Zheltov-Kochina model on the segment with Wentzell boundary conditions
Краткое сообщение
In terms of the theory of relative p-bounded operators, we study the Barenblatt-Zheltov-Kochina model, which describes dynamics of pressure of a filtered fluid in a fractured-porous medium with general Wentzell boundary conditions. In particular, we consider spectrum of one-dimensional Laplace operator on the segment [0, 1] with general Wentzell boundary conditions. We examine the relative spectrum in one-dimensional Barenblatt-Zheltov-Kochina equation, and construct the resolving group in the Cauchy-Wentzell problem with general Wentzell boundary conditions. In the paper, these problems are solved under the assumption that the initial space is a contraction of the space L2(0, 1).
Бесплатно
The Cauchy problem for the Sobolev type equation of higher order
Статья научная
Of concern is the semilinear mathematical model of ion-acoustic waves in plasma. It is studied via the solvability of the Cauchy problem for an abstract complete semilinear Sobolev type equation of higher order. The theory of relatively polynomially bounded operator pencils, the theory of differentiable Banach manifolds, and the phase space method are used. Projectors splitting spaces into direct sums and an equation into a system of two equivalent equations are constructed. One of the equations determines the phase space of the initial equation, and its solution is a function with values from the eigenspace of the operator at the highest time derivative. The solution of the second equation is the function with values from the image of the projector. Thus, the sufficient conditions were obtained for the solvability of the problem under study. As an application, we consider the fourth-order equation with a singular operator at the highest time derivative, which is in the base of mathematical model of ion-acoustic waves in plasma. Reducing the model problem to an abstract one, we obtain sufficient conditions for the existence of a unique solution.
Бесплатно
The Impact of Dataset Size on the Reliability of Model Testing and Ranking
Статья научная
Machine learning is widely applied across diverse domains, with research teams continually developing new recognition models that compete on open datasets. In some tasks, accuracy surpasses 99% These minimal differences, combined with the varying size of the benchmark datasets, raise questions about the reliability of model evaluation and ranking. This paper introduces a method for determining the necessary dataset size to ensure robust hypothesis testing for model performance. It also examines the statistical significance of accuracy rankings in recent studies on MNIST, CIFAR-10, and CIFAR-100 datasets.
Бесплатно
The Lyapunov stability of the Cauchy-Dirichlet problem for the generalized Hoff equation
Статья научная
We consider the initial boundary value problem with homogeneous Dirichlet boundary conditions for the generalized Hoff equation in a bounded domain. This equation models the dynamics of buckling of a double-tee girder under constant load and belongs to a large class of Sobolev type semilinear equations (We can isolate the linear and non-linear parts of the operator acting on the original function). The paper addresses the stability of zero solution of this problem. There are two methods in the theory of stability: the first one is the study of stability by linear approximation and the second one is the study of stability by Lyapunov function. We use the second Lyapunov''s method adapted to the case of incomplete normed spaces. The main result of this paper is a theorem on the stability and asymptotic stability of zero solution to this problem.
Бесплатно
The Pyt'ev-Chulichkov method for constructing a measurement in the Shestakov-Sviridyuk model
Статья научная
One of the approaches to solution of the problem on restoring a distorted input signal by the recorded output data of the sensor is the problem on optimal dynamic measurement, i.e. the Shestakov-Sviridyuk model. This model is the basis of the theory of optimal dynamic measurements and consists of the problem on minimizing the difference between the values of a virtual observation obtained using a computational model and experimental data, which are usually distorted by some noise. We consider the Shestakov-Sviridyuk model of optimal dynamic measurement in the presence of various types of noises. In the article, the main attention is paid to the preliminary stage of the study of the problem on optimal dynamic measurement. Namely, we consider the Pyt'ev-Chulichkov method of constructing observation data, i.e. transformation of the experimental data to make them free from noise in the form of ``white noise" understood as the Nelson-Gliklikh derivative of the multidimensional Wiener process. In order to use this method, a priori information about the properties of the functions describing the observation is used.
Бесплатно
The blow-up solutions to nonlinear fractional differential Caputo-system
Статья научная
In this paper, we establish the finite time blow-up of solutions to nonlinear differential systems governed by Caputo fractional differential equation. Then, we derive sufficient conditions on parameters with positive given data. Moreover, for this purpose under some assumptions, we prove the non existence of global solutions to the considered class of nonlinear fractional differential Caputo-system subject to the initial condition. To prove our main result, we apply the test function method, Riemann-Liouville integral, Caputo derivative operator and some general analysis tools. Our result is new and generalizes the existing one.
Бесплатно