Aviation and spacecraft engineering. Рубрика в журнале - Siberian Aerospace Journal

Публикации в рубрике (128): Aviation and spacecraft engineering
все рубрики
Increasing the positioning accuracy of the GLONASS system

Increasing the positioning accuracy of the GLONASS system

Timofeev A.L., Sultanov A.Kh., Meshkov I.K., Gizatulin A.R.

Статья научная

The accuracy of determining coordinates in global positioning systems is determined by the number of satellites simultaneously visible to the consumer's navigation equipment. Over most of the earth's surface, there are up to 11 GLONASS satellites above the horizon at the same time, but the signal-to-noise ratio in the communication channel required for error-free information reception is often ensured only for 2-4 satellites. To improve the positioning accuracy, it is proposed to use the holographic noise-immune coding method based on the holographic representation of the digital signal. The message coding process is a mathematical modeling of a hologram created in virtual space by a wave from the input signal source. It is shown that the holographic representation of the signal has significantly greater noise immunity and allows restoring the original digital combination when most of the code message is lost and when the coded signal is distorted by noise several times exceeding the signal level. The studies have shown that the introduction of holographic coding in the GLONASS satellite communication channel will enable consumer navigation equipment to receive information from a larger number of satellites, which will significantly improve the positioning accuracy. In a common situation where the required signal-to-noise ratio is maintained for only 4 GLONASS satellites, the positioning error exceeds 10 meters. Using holographic coding in the same situation, information from 9 satellites will be decoded without error, and the positioning error will be about 2 meters.

Бесплатно

Increasing the specific impulse of an oxygen-hydrogen liquid rocket engine by in-creasing heat transfer in the combustion chamber

Increasing the specific impulse of an oxygen-hydrogen liquid rocket engine by in-creasing heat transfer in the combustion chamber

Vasilevsky D.O.

Статья научная

Liquid-propellant rocket engines (LPRE), operating according to a gas-free generator scheme, are used for the upper stages of launch vehicles and upper stages. In engines of this scheme, only cryogenic fuel is used, which provides a high engine STI. Also, a distinctive feature is the absence of a gas generator, the combustion generators of which feed the turbine of the main turbopump unit. In the gas-free LPRE scheme, the turbine is driven by gas-return hydrogen heated in the cooling loop. Therefore, the high parameters of the LRE, such as the pressure in the CC, the thrust of the engine and the specific thrust pulse depend on the effective heat removal from the firing wall of the combustion chamber and the intensification of heat ex-change in the cooling path. There is a number of solutions that allow to increase the amount of heat transferred to the refrigerant in the inter-shirt space. Therefore, the search for an optimal cooling scheme and promising design solutions for the intensification of heat transfer in the engine cooling path will allow us to determine the high param-eters of the LPRE. This article discusses the effect on the thermal state of the combustion chamber of the gas fins installed on the firing wall of the engine. Gas fins belong to the developed heat exchange surfaces and increase the area of the side surface of the combustion chamber. With the help of the developed mathematical model of the cooling chamber of a gas-free LRE, extremes in the intensification of heat exchange in the cooling path have been identified. The dependences of the specific thrust impulse of the engine on the pressure in the combustion chamber and the geometric dimensions of the engine are also obtained.

Бесплатно

Influence of plasma jets of electric jet engines on spacecraft functional characteristics

Influence of plasma jets of electric jet engines on spacecraft functional characteristics

A. B. Nadiradze, S. G. Kochura, I. A. Maximov, R. E. Tikhomirov, S. V. Balashov

Статья научная

The issues of compatibility of correcting electric jet engines (EJE) and large-size transformable antennas (LTA) used in high-orbit communication satellites are considered. The paper deals with the erosive and polluting effect of EJE jets interacting with knitted mesh material (grid mesh), which is used for manufacturing LTA reflectors. The erosive effect of the EJE jets on the LTA mesh is characterized by the fact that the angles of ions incidence on the surface of the threads in the mesh are in the range from 0 to 90, i. e. such effect takes place at practically any angle of ions incidence on the mesh surface. The research includes both mathematical description of physical processes and conducting a wide series of experiments, which makes it possible to achieve the necessary reliability of the results. It has been established that the effect of plasma jets of correcting engines can lead to significant sputtering of the reflecting coating from the surface of a large-size antenna reflector. The authors obtained experimental data on the degradation of the reflection coefficient of electromagnetic radiation from the mesh, depending on the degree of plasma jet influence. It was found that the sputtering of reflecting coating from the surface of threads does not significantly affect the reflection coefficient. The sputtering of the coating at the points of threads contact is much more significant. Strong dependence of the reflection coefficient on the type of mesh weaving was also found. The mechanism of sputtering products deposition on reflecting coatings of the thermal control system radiators was investigated. The results of calculations of the sputtering coefficient and the sputtering indicatrix of the reflecting coating applied to the mesh threads were obtained. The degradation of the functional characteristics of thermoregulatory coatings (TRC) during the deposition of thin films of gold, which is one of the possible materials for a reflecting coating, was experimentally determined. Estimates of the maximum permissible level of TRC contamination were obtained. It is shown that, subject to the relevant design rules, it is possible to use EJE and LTA together in high-orbit communication satellites.

Бесплатно

Information-measuring system of pyrometric type for small-sized unmanned aircraft

Information-measuring system of pyrometric type for small-sized unmanned aircraft

Akzigitov A. R., Pisarev N. S., Statsenko N. I., Neverov U. A., Akzigitov R. A.

Статья научная

A new trend of science and technology is now rapidly developing both in Russia and abroad – the development of miniature unmanned aerial vehicles. The key system of on-board control equipment (avionics) of an unmanned aerial vehicle (UAV) is the orientation system for determining UAV attitude relative to reference system. In small-size UAV, we can meet the application of strapdown attitude reference systems, magnetometric, pyrometric, video systems, etc. Rapid development of mini- and micro-UAVs requires the development of information-measuring systems (operating on different physical principles) in order to determine UAV attitude parameters in flight. With UAV mass and wingspan reduction, there are growing requirements for these systems, concerning the accuracy of positioning parameters and more compact dimensions. Manufacturing of most information-measuring and control systems of manned aircraft and heavy UAVs rely on traditionally used gyroscopes and accelerometers. They are complex fine-mechanics instruments of considerable power consumption, rather large size, weight and high cost. A significant improvement of the accuracy in UAV angular coordinates determination is achieved by integrating orientation systems of various types. The use of GPS / GLONASS signals also improves the accuracy and reliability of determining UAV angular coordinates and supplies the additional function of measuring its geographical coordinates.

Бесплатно

Inter-satellite optical communication link

Inter-satellite optical communication link

Aleksandrov A. V., Vasilenko A. V., Korolev D. O.

Статья научная

A two-level system of data transmission in the optical range is considered between a low-orbit spacecraft located in a sun-synchronous orbit and a repeater satellite located in a geostationary orbit. This topic is rather relevant due to the fact that the rapid development of remote sensing satellites resulted in the increase of the amount of transmitted information, which in consequence introduced new requirements for communication systems. The increase of data transmission rate and severization of requirements for communication systems contributed to the development of one of the most promising areas of space communications, based on the information transmission via a laser channel, due to a high energy concentration and a much higher carrier frequency. The prospects for the application of optical communication systems are designated by lower power consumption, dimensional specifications and the mass of the transceiver equipment of the optical range (compared to radiofrequency range systems). The article describes the solution of application of optical communication link between a low-orbit spacecraft and a repeater satellite. The main factors that contribute to the attenuation in the process of signal propagation along the route are presented and analyzed. A model of a communication channel between a low-orbit spacecraft and a repeater satellite is provided for a visual image. Two different approaches of mutual guidance and tracking of laser terminals are described for using beacons and without ones. EDRS foreign system is considered as an analogue. The estimation of the main parameters of the communication link is given. The communication system considered in the article will allow for greater carrier capacity of the data transmission in the optical range between the low-orbit spacecraft and repeater satellite. The application of this system will allow solving problems, including in the interests of any departments and structures of the Ministry of Defense of the Russian Federation, for which the rate of obtaining information is one of the basic requirements for a satellite communication system. The tasks of precise targeting of receiving and transmitting devices arising as a result of narrow beam patterns can be solved with current technical means.

Бесплатно

Investigation of the metrological characteristics of the PulsESPI system applied to the precision inspection of thermal deformations

Investigation of the metrological characteristics of the PulsESPI system applied to the precision inspection of thermal deformations

Zavyalov P. S., Kravchenko M. S., Urzhumov V. V., Kuklin V. A., Mikhalkin V. M.

Статья научная

High-precision and reliable inspection of thermal deformations is necessary in terms of simulating the effects of space in the ground-based experimental processing of antennas and mirror systems of spacecrafts. Inspection of objects up to 1.5 m in size is considered in the paper. In practice, it can reach sizes up to 10 m. Requirements for thermal deformation are in range of 10–200 micrometers. The deformable surface is rough (Ra » λoptic). The measurement error, however, should not exceed ± 1 micron. The electronic speckle pattern interferometry (ESPI) method is the most suitable for solving this problem. The method allows to inspection objects with a randomly inhomogeneous surface. The method assumes that it is necessary to calculate the wave phase values from the recorded picture by the digital matrix. It is the phase that contains information about the deformation, and the spatial phase shift method is used to calculate it. One of the measuring systems based on this method is the measuring system PulsESPI (Carl Zeiss Optotechnik GmbH production, Germany). It has a high sensitivity which is about 50 nm. However, this measuring system is designed for single measurements. In this regard, an additional software module for processing and visualization the result of a series of several hundred measurements has been developed. The experimental test bench with a test object has been developed to research the metrological characteristics of the PulsESPI system in accordance with thermal deformations measurements (multiple determinations). The PulsESPI system and the Renishaw XL-80 interferometer introduced into register of measuring instrumentation of Russian Federation were located on different sides of the object 1.5 m in size. As a result of measuring the surface displacement measured by the Renishaw XL-80 interferometer and its corresponding point from the PulsESPI system deformation map are compared. Three types of tests were carried out at the developed bench. The root-mean-square deviation of single measurements was no more than ± 0.2 μm. Error was no more than ± 1 μm when the series of measurements was conducted in which a total strain of 200 μm was obtained. The results obtained suggest the possibility of using this system for high-precision inspection of thermal deformations of large objects.

Бесплатно

Investigation of the stress state and assessment of the stability of an anisogrid cylindrical shell when changing the parameters of the rib structure under static loading

Investigation of the stress state and assessment of the stability of an anisogrid cylindrical shell when changing the parameters of the rib structure under static loading

Kovalchuk L.M., Burnysheva T.V.

Статья научная

The object of the study is a cylindrical mesh shell without a regular structure covering, made of carbon fiber composite material. A distinctive feature of this class of structures is the intersection of families of annular and spiral ribs. Mesh shells are used as power elements of spacecraft, therefore, when designing them, the main re-quirements are a reduction in the mass of the structure, high strength and stiffness characteristics. The re-duction of the shell mass is achieved by varying and selecting the structural and geometric parameters of the ribs. The article considers a set of mesh cylindrical structures of fixed mass. The authors have developed and presented an algorithm for calculating the number of elements of a regular rib structure and calculating the values of geometric parameters of elements of rib families. Two approaches to the formation of rib sys-tems are considered: by changing the heights or thicknesses of the rib structure. A macro has been developed for modeling parametric discrete models of such rib structures in the An-sys Mechanical APD software package. When constructing discrete grid models, a one-dimensional two-node finite element BEAM4 was used. The model was rigidly attached at the nodes along the lower edge, a load was applied to the nodes of the upper edge. Two types of loading were considered. The “non-flight” mode was determined by the axial loading of the shell evenly distributed along the upper edge. Flight mode – additionally took into account the applied moment. The displacement and deformation fields were calculated numerically in the ANSYS finite element package. The article presents the results of a study of the effect of the density of the rib structure on the stability of mesh shells under static axial loading, natural frequencies and waveforms. It is shown that with increasing density, the rib structure becomes thinner. At the same time, the critical load decreases, the values of the natural frequencies of the shells decrease, and the number of waves in the forms increases. The influence of approaches to the modeling of rib structures on the results of numerical calculations is noted.

Бесплатно

Issues of ensuring the resistance of high-voltage solar arrays of spacecraft to the effects of secondary arc discharges

Issues of ensuring the resistance of high-voltage solar arrays of spacecraft to the effects of secondary arc discharges

Valiullin V.V., Kochura S.G., Maksimov I.A., Nadiradze A.B.

Статья научная

We have considered the issues of ensuring the resistance of high-voltage solar battery (SB) of spacecraft to the effects of secondary arc discharges. Research in this area has been going on for more than 50 years, but the answer to all the questions has not yet been found. First of all, this is due to the complexity of the electrophysical processes occurring on the surface of the spacecraft in space and in laboratory conditions. The second reason is the random nature of secondary vacuum arc discharges, which requires the use of special test methods to confirm the effectiveness and reliability of selected design and technological solutions. Tests in conditions close to full-scale conditions do not allow us to solve this problem. We have given a retrospective review of publications on the physical features of secondary arcs arising on SB of spacecraft, the mechanisms of their initiation, experimental research and testing methods. We paid considerable attention to the issues of the occurrence of secondary arc discharges SB of the spacecraft in the conditions of ionospheric plasma and plasma generated by electric propulsion thrusters. We have shown that despite the large amount of accumulated data and knowledge, the transition from low-voltage SB to high-voltage SB remains a difficult scientific and technical problem, which requires additional research to solve. In addition, it is already necessary to start training personnel who possess a wide range of knowledge and are able to work on this topic. To do this, it seems advisable to organize sectoral research, as well as the allocation of targeted funds for the training of highly qualified specialists and their independent research. This approach will make it possible to solve the problem of creating high-voltage SB in the shortest possible time and prepare personnel for the development of this technology.

Бесплатно

Local heat transfer parameters in the areas of the developing temperature boundary layer in the cavities of gas turbines local heat transfer parameters in the areas of the developing temperature boundary layer in the cavities of gas turbines

Local heat transfer parameters in the areas of the developing temperature boundary layer in the cavities of gas turbines local heat transfer parameters in the areas of the developing temperature boundary layer in the cavities of gas turbines

Zuеv А.А., Аrngold А.А., Falkova E.V., Tolstopyatov M.I., Dubynin P.А.

Статья научная

In this work, an analytical determination of the local heat transfer coefficient in the planes of rotation of gas turbines is carried out using an affine-like model for the distribution of temperature and dynamic spatial boundary layers with a convective component (at Pr < 1). The method of analytical study used in the work led to results close to the experimental values. The problem of determining the thickness of the energy loss is solved using the integral relation of the energy equation of the temperature spatial boundary layer, which makes it possible to integrate the necessary curvature over the surface. The law of heat transfer of the turbulent boundary layer for the rotational motion of the flow and motion according to the law of “solid body” is expressed. Equations are obtained for determining the local heat transfer coefficient by the Stanton criterion for various external flow laws for a power-law velocity distribution in the boundary layer according to the affine-like model of the temperature boundary layer. Heat transfer coefficients correlate with sufficient accuracy with experimental data and dependencies published by other authors: J. M. Owen, L. A. Dorfman, I. V. Shevchuk. The deviation of the results obtained from the dependence of the model with a convective component and with affinity-like profiles do not have statistically significant differences. The obtained results of the study and their comparison with the results of other authors showed that they are suitable for engineering calculations and analysis of the impact of local heat transfer coefficients on high-temperature units of a turbopump unit.

Бесплатно

Mathematical model of the mirror system of the Millimetron observatory and a description of the method of pre-measurement of the telescope within this model

Mathematical model of the mirror system of the Millimetron observatory and a description of the method of pre-measurement of the telescope within this model

Makarov S. N., Verhoglyad A. G., Stupak M. F., Ovchinnikov D. A., Oberemok J. A.

Статья научная

A mirror geometry control system for the Millimetron Observatory is being created to work as part of the on-board complex of scientific equipment. The system is designed to monitor the quality of the space telescope’s mirror system and use the data received as feedback signals for pre-setting and tuning the telescope’s optical system in outer space. The goal of the system is estimation of the multidimensional vector of unknown parameters of the telescope’s mirror system by indirect measurements obtained as a result of the measurement of the telescope by 3D scanning. A mathematical model has been created, numerically describing the process of pre-measurement of the mirror system of the Millimetron Observatory using optical control marks on the surface of the mirror system. The linear mathematical model allows to link the actual indirect measurements of the mirror system with the unknown biases of its parameters, determining the shape of the telescope. A formula has been developed for the optimal reverse problem solver in the process of pre-measurement of the mirror system. The method of measuring the components of the telescope as part of its pre-setting is described. The measurement of control marks is based on a onboard 3D scanner embedded in the design of the mirror system control system. The error analysis was carried out using the optimal solver, and a covariance matrix was obtained for the error vector of estimated parameter.

Бесплатно

Mathematical model of thermophysical loading of a small-caliber artillery barrel with variant discretization of half-integer layers of the computational domain

Mathematical model of thermophysical loading of a small-caliber artillery barrel with variant discretization of half-integer layers of the computational domain

Podkopaev I.A., Podkopaev A.V., Dolzhikov V.I.

Статья научная

In the conditions of continuous financing of the programs of the Ministry of defense of the Russian Federation, the question of finding the most effective ways to modernize weapons and military (special) equipment, the developments in which are maximum and the processes of their improvement can take no more than a few years, is particularly acute. Such products, in particular, include aviation artillery weapons (AAO), the prospects for the use of which remain for the entire period of the army's existence with conventional weapons. The main factor influencing the quality of the AAO functioning is considered to be the thermophysical loading of a small-caliber artillery barrel (hereinafter referred to as the barrel) during firing. The problem of increasing the accuracy of determining the temperature field of the barrel is again updated by tightening the conditions for striking targets. Issues closely related to the intensification of AAO application regimes have come to the fore. These are issues of heating, cooling, thermal strength, wear, barrel survivability, issues of safety and firing efficiency. Despite the methodological evidence of analytical and numerical approaches to formalizing heat transfer in the wellbore, their practical implementation is rather complicated. The physical and mathematical meaning of this reason is as follows: possible instability of solutions; manifestation of oscillations in areas of large gradients; simultaneous presence in the solution regions of supersonic, sonic and subsonic zones; the existence of laminar, turbulent flows and other non-linear formations; non-triviality of setting boundary conditions; the presence of thermal resistance of surfaces, etc. However, the practical needs of ensuring safety and increasing the efficiency of fire operation of AAO dictate the need to obtain a close approximation of the problem under consideration to its possibly existing exact analytical solution. The aim of the work is to improve the mathematical apparatus that simulates the temperature field of the shaft based on a combination of heat transfer methods and mathematical physics. By verifying the reliability of the developed mathematical model (hereinafter referred to as the model, if from the context of the presentation of the material it is clear that we are talking about the proposed tools), the facts of the absence of methodological errors in the formation of the constituent blocks of the model and the increase in the accuracy of determining the thermal loading of the wellbore by 9.4 % were established. Based on the accents of the stated problem, the directions for improving the model are argued.

Бесплатно

Measurement of temperature distribution using a three-wire system of sensors based on thermistors

Measurement of temperature distribution using a three-wire system of sensors based on thermistors

V. A. Derevyanko, A. V. Makukha

Статья научная

Improving the reliability and increasing the avionics resource is associated with possibility of continuous control of temperature fields of printed circuit boards. This problem can be solved only with the use of a large number of temperature sensors. It raises the problem of connecting the measuring elements and recording equipment. Several methods with their own advantages and disadvantages are proposed. One of the implemented and patented methods is using a set of resistive diode sensors installed in series on a threewire line. The temperature sensors are pairs of counter - connected diodes with a sequential survey when applying sawtooth voltage. The system is simple and easy to implement, but its main drawback is the method of determining the temperature by measuring the amplitude of the total reverse currents of diode pairs. It determines the large measurement errors, especially in the temperature range less than 20°C. The article deals with a similar design of a three-wire circuit, but with a fundamentally different approach to temperature measurement. The temperature sensor here is not diode pairs, but thermistors with a well-known dependence of resistance on temperature and high accuracy, and diode pairs record only the moment of coincidence of the sawtooth voltage with the voltage on the thermistors. This approach allows using mathematical methods of signal processing to accurately determine the voltage drop on the thermistor, and this ensures the accuracy of the resistance/temperature and the expansion of the temperature range. Given the fact that thermistors are increasingly used to measure temperature, simplifying their inclusion in a large number will allow to register the temperature field of electronic units, which is extremely important for spacecraft. The proposed version of a three-wire circuit for connecting temperature sensors at several points was tested experimentally, including at negative temperatures.

Бесплатно

Method for calculating the thermodynamic characteristics of a vortex ejector with known geometric dimensions

Method for calculating the thermodynamic characteristics of a vortex ejector with known geometric dimensions

Kuznetsov V.I., Makarov V.V.

Статья научная

Based on the previously compiled physical and mathematical model of the vortex ejector workflow, its solution was made. The solution of this model made it possible to compile two calculation methods: a method for calculating the optimal geometry of a vortex ejector for given thermodynamic characteristics and a method for calculating the thermodynamic characteristics of a vortex ejector with known geometric dimensions [1; 2]. Vortex ejectors are used in many areas of aerospace engineering. The compiled development of a method for calculating the thermodynamic characteristics of a vortex ejector with known geometric dimensions will make it possible to use vortex ejectors more widely in the aerospace industry. The calculation method is based on the concepts of tangential stresses arising in a viscous medium when two flows moving at different speeds interact. The mechanism of kinetic energy transfer from a high-energy gas to a low-energy one is shown.

Бесплатно

Method for processing the results of cavitation tests of TNA pumps in order to obtain an approximating function

Method for processing the results of cavitation tests of TNA pumps in order to obtain an approximating function

Torgashin A.S., Zhujkov D.A., Nazarov V.P., Begishev A.M.

Статья научная

When designing rocket engines, the problem of providing the specified basic design parameters is solved. In connection with the increase in requirements for products of rocket and space technology, the requirements for ensuring the energy efficiency of all its constituent elements are also increasing. As a rule, the task of increasing the energy characteristics of a rocket engine is carried out by increasing the pressure in the combustion chamber and the rotational speed of the turbopump shaft. An increase in the rotational speed of the shaft of a turbopump unit requires the provision of a cavitation-free operation of the pump with the absence of cavitation breakdown. This problem can be solved in various ways: by constructive improvement of the pump or by increasing the pressure parameter at the pump inlet. However, too much increase in inlet pressure is not possible, as this will increase the thickness of the walls of the rocket's fuel tanks and a corresponding increase in the mass of the entire rocket. Turning on the screw, although it does not guarantee cavitation-free operation at any inlet pressure, is the most preferred method. The geometry of the bore part of both the screw prepump and the pump blades is designed to ensure non-cavitational operation. When designing, at the stage of experimental testing of pump modes, it is pos-sible to use the methods of computational fluid dynamics (Computational Fluid Dynamics, CFD). These methods are used in various areas of general engineering and have proven themselves well. However, the rocket motor pump has a high pressure drop with relatively small dimensions. The question arises of adapt-ing CFD methods to modeling cavitation tests. This work is aimed at deriving a function approximating the TPU test data set with a view to its further adaptation for CFD methods.

Бесплатно

Methodological principles for the formation of a number of unified space communication satellite platforms

Methodological principles for the formation of a number of unified space communication satellite platforms

Chebotarev V.E., Zimin I.I., Vnukov A.A., Shangina E.A.

Статья научная

This article formulates the topical problem of formalizing the methodological principles of the search for a compromise between properties repeatability and modification (novelty) for the new models of space technology – communication satellites. The main methodological principles of development continuity are the unification of products and their component parts, means of technological equipment and technological processes, which allows to reduce their diversity and nomenclature. The order of the nomenclature of the articles and their component parts is achieved by developing parametric and type-size series with rationally chosen intervals between the adjacent members of the series according to a complex criterion, a link to the target product performance with the cost of creating the product. The research develops a project model and defines criteria for selecting the size type of a universal space platform. In designing a new spacecraft on the basis of a unified space platform (USP), there is a need to refine it to meet the resource requirements of the new payload (mass and energy consumption). The article sets out the methodological principles for assessing the range of effective applications of the universal space platform for the two most extreme cases of resource requirements (by mass and energy consumption) of the payload: the resources of the platform are excessive or insufficient. Methodological principles have been developed to form a number of unified space platforms. Using the methodological principles for the formation of a series of unified space platforms, the effectiveness ranges of USP were evaluated and the completeness of a number of geostationary communication satellites developed by “ISS” was assessed.

Бесплатно

Methodological principles of space vehicle design for the maximum energy supply of the payload

Methodological principles of space vehicle design for the maximum energy supply of the payload

Chebotarev V.E., Fatkulin R.F., Vorontsova E.O., Shangina E.A., Balandina T.N.

Статья научная

The design of spacecraft at the initial stages is carried out in the presence of uncertainties in terms of parameters and conditions. The determination of design parameters is performed step by step: determination of the nominal values of design parameters, normalization of resource reserves (mass, volume, energy consumption) according to the design parameters to parry uncertainties, designing spacecraft for marginal resources. The operation of spacecraft with an electrical load switched on includes several stages: launching into the target orbit, putting into regular operation, regular operation for the intended purpose, decommissioning from the intended use in case of emergencies. The power supply system is designed to provide uninterrupted autonomous power supply to the onboard equipment in all modes and at all stages during the period of active existence of spacecraft, taking into account the presence of shadow zones of the orbit from the Earth and the Moon. In this article, the methodological principles for designing spacecraft for the maximum power supply of payload in the presence of uncertainties in parameters and conditions are developed. The mathematical models for calculating the parameters of the energy balance of spacecraft have been developed for various options for realizing the power of the session load, depending on the level of illumination of the orbit and the period of operation of spacecraft. The effectiveness of using the methodological principles of designing spacecraft for the maximum power supply of the payload, depending on the level of illumination of the orbit and the period of operation of spacecraft, has been evaluated. A technique has been developed for rationing reserves by spacecraft energy resources to parry uncertainties in terms of parameters and conditions, as well as the principles of its application when designing spacecraft for maximum payload power supply.

Бесплатно

Methodology for assessing reliability of stand-bed systems in testing liquid throat engines

Methodology for assessing reliability of stand-bed systems in testing liquid throat engines

V. P. Nazarov, V. Yu. Piunov, A. I. Kolomentsev, V. G. Yatsunenko, K. F. Golikovskaya

Статья научная

In the process of design processing of low thrust rocket engines great attention is paid to special bench test methodologies, technical use of benches, simulation measurements of the physical conditions of outer space, as well as the use of diagnostic studies and equipment for various physical studies and measurements. The efficiency of ground (bench) testing is ensured by simulating the conditions of full-scale tests and taking into account the influence of all operational factors affecting the reliability of the assessment of reliability indicators during design testing in ground conditions. A special place in the issues of achieving test efficiency is occupied by the requirements to ensure the accuracy and reliability of test results. A significant amount of testing during the development of engines should be carried out under the required vacuum conditions on test benches equipped with pressure chambers with vacuum systems. As a result of failures of some elements of a complex bench system, the quality of functioning deteriorates and the probability of successful performance of the functions that determine the output effect of the system decreases. Therefore, the task of evaluating the reliability of the systems of the stand for firing tests of rocket engines is reduced to elucidating the effect of element failures on the quality of operation and the output effect of each system. When testing, the given conditions must unambiguously determine the technical characteristics of the test stand, including the pressure chamber and vacuum equipment. Tests must be carried out with a sufficient degree of certainty. When assessing the dynamic characteristics in pulsed modes, significant errors are introduced by inertial forces. Methods for ensuring the dynamic similarity of the characteristics of the engine supply systems with fuel components on the stand and as part of the propulsion system of the spacecraft, including the correspondence of the hydraulic, inertial and wave characteristics of the mains, are considered. An analysis of the errors in the test results was carried out. The tasks of the methodology for calculating instrumental errors are formulated. An assessment of the frequency characteristics of bench hydraulic lines was carried out. Recommendations have been developed to improve the accuracy of measuring parameters during bench firing tests of low-thrust rocket engines.

Бесплатно

Methodology for calculating the de-weighting system of large-sized transformable elements of space vehicles for ground tests

Methodology for calculating the de-weighting system of large-sized transformable elements of space vehicles for ground tests

Belyaev A. S., Filipas A. A., Tsavnin A. V., Tyryshkin A. V.

Статья научная

This paper considers the methodology for calculating the de-weighting system of spacecraft elements for ground tests, taking into account the deployment options, de-weighting conditions, types and options of de-weighting systems. An example of calculation for a 3-section solar battery without a beam with incomplete de-weighting and with minimization of moments in the hinges is given. Genetic algorithms are used as an algorithm for determining the parameters of the de-weighting system, which allows obtaining the minimum moments in the hinges. The moments and forces acting in the system were checked by plotting diagrams in the expanded state. In addition, a check for compliance with the specified distance, based on design constraints, between the points of application of the weighting forces was made.

Бесплатно

Modeling and verification of working process parameters in gas generators for pressurizing fuel tanks of liquid propellant rocket propulsion systems

Modeling and verification of working process parameters in gas generators for pressurizing fuel tanks of liquid propellant rocket propulsion systems

Sheludko M.L., Nazarov V.P., Zenyuk K.O., Nazarova L.P.

Статья научная

The main requirements for LRE gas generators are high stability of operation, ease of workflow management, as well as high efficiency of the generator gas. A particularly difficult task is to ensure the sustainability of the workflow. In addition to the probability of transverse vibrations in the in-chamber volume, due to the presence of additional volumes of various configurations and lengths attached to the reaction chamber, acoustic vibrations of complex longitudinal modes may occur. Most of the existing methods of testing a gas generator are criterion-empirical in nature and are based on the processing of experimental results, which does not always provide the required accuracy of calculating dynamic and thermal characteristics. The need for experimental and theoretical refinement of the calculation methods of thermodynamic processes of gas generators is an urgent task that will significantly reduce the material and time costs for preliminary design, testing and fine-tuning of modern models of engines and power plants of aircraft. Therefore, the calculation and analysis of the LRE gas generator is an important stage in the design and development of modern engine designs. Using the finite element method of the SOLID WORKS software package, a model of a two-zone gas generator for supercharging fuel tanks of the LRE was built. A study was conducted on modeling the workflow in a gas generator, visualization of thermodynamic processes in the product was built, numerical characteristics were obtained. The method of autonomous bench (firing) tests of fuel tank supercharger gas generators, the method of verification of numerical methods are considered.

Бесплатно

Modeling of the stress-strain state of rocket-space technology structural elements manufactured by using additive technologies

Modeling of the stress-strain state of rocket-space technology structural elements manufactured by using additive technologies

Ushakova E. S.

Статья научная

One of the promising areas for improving the methods of manufacturing structural elements of rocket and space technology is the use of selective laser melting technology which represents a unique opportunity to manufacture metal products by melting powder and producing a one-piece solid phase structure. However, pores and other structural defects can appear in the formed element during laser sintering which causes a decrease in the strength characteristics of the parts produced. An important step in the additive technologies introduction is the development of methodology for the preliminary prediction of the strength characteristics of manufactured structural elements under the influence of mechanical loads with the help of mathematical modeling. The methodology for estimating the material strength reduction of a rocket-space technology element obtained using additive technologies by simulating a porous structure and calculating the characteristics of the stress-strain state is presented. The proposed mathematical model and the methodology for calculating the specimen loading on the basis of the distortion energy theory allow calculating the stress-strain state in the process of numerical simulation for different values of the pore diameter. The reduction in yield strength due to the material porosity of the part is estimated using a coefficient equal to the ratio of equivalent stresses arising when a load is applied to a specimen manufactured using traditional and additive technologies. The value of the introduced coefficient characterizes the structure of the grown product and is considered as a function of the random arrangement of pores in the specimen under study. The appearance of pores is the result of a combination of factors: the composition and dispersion of the original metal powder, feed rate, removal distance and laser power during sintering, part orientation and sintering direction, the height of the level of powder deposited on a special base before sintering, etc. The paper evaluates the reduction in strength for the working part of a series of tensile test specimens grown from metal powder of different dispersity. The non-linear nature of the dependence of the yield strength on the particle diameter of the original metal powder is established. The maximum value of the yield strength corresponds to the specimen with the minimum value of the total surface area of the pores.

Бесплатно

Журнал