Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика @vestnik-susu-mmph
Статьи журнала - Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика
Все статьи: 784

Статья научная
Целью исследования является развитие асимптотического метода пограничных функций для бисингулярно возмущенных задач. В работе доказана возможность применения обобщенного метода пограничных функций к построению полного асимптотического разложения решения задачи Дирихле для бисингулярно возмущенного, линейного, неоднородного, эллиптического уравнения второго порядка с двумя независимыми переменными в кольце с квадратичным ростом на границе. Построенный асимптотический ряд представляет собой ряд Пюйзо. Построенное разложение обосновано принципом максимума.
Бесплатно

Асимптотика решения двухзонной двухточечной краевой задачи
Статья научная
Исследуется асимптотическое поведение решения двухточечной краевой задачи на отрезке для линейного неоднородного обыкновенного дифференциального уравнения второго порядка с малым параметром при старшей производной. Существенные особенности задачи - присутствие малого параметра перед производной второго порядка от искомой функции, существование двухслойного пограничного слоя на левом конце отрезка при х = 0 и негладкость решения соответствующей невозмущенной краевой задачи. Требуется построить равномерное асимптотическое разложение решения двухзонной двухточечной краевой задачи на единичном отрезке с любой степенью точности при стремлении малого параметра к нулю. Из-за второй и третьей особенности задачи так легко невозможно построить асимптотическое разложение решения по малому параметру известными асимптотическими методами. При решении поставленной задачи нами используются: методы интегрирования обыкновенных дифференциальных уравнений, метод малого параметра, классический метод пограничных функций, обобщенный метод пограничных функций и принцип максимума. Задача решается в два этапа: на первом этапе строится формальное разложение решения двухточечной краевой задачи, а на втором этапе приводится обоснование этого разложения, т. е. оценивается остаточный член разложения. На первом этапе формальное асимптотическое решение ищется в виде суммы трех решений: гладкое внешнее решение на всем отрезке; классическое погранслойное решений в окрестности х = 0, которое экспоненциально убывает вне погранслоя и промежуточное погранслойное решение при х = 0, которое степенным характером убывает вне погранслоя. Построенное асимптотическое разложение решения двухточечной краевой задачи является асимптотическим в смысле Эрдей.
Бесплатно

Асимптотика решения одной задачи Валле-Пуссена с нестабильным спектром
Статья научная
Дифференциальным уравнением описывается связь между неизвестной функцией и ее производными. Такие связи отыскиваются в различных областях знаний: в механике, физике, химии, биологии, экономике, социологии, океанологии и др. Системы обыкновенных дифференциальных уравнений с малым параметром используются при моделировании процессов различной природы. Обычно при моделировании отбрасывают малые факторы, чтобы получилась более простая модель, с которой можно было бы извлечь нужную информацию. Практика доказала, что малые факторы надо не учитывать не в уравнениях, а в решениях. Уравнения, содержащие малые факторы, называют возмущенными. Теория возмущений получила широкое применение в современной прикладной математике. С ее помощью исследователи отвечают на вопросы влияния различных факторов на течение процесса, об устойчивости полученных решений, близости процессов, описываемых полученными решениями, реальным исследуемым объектам. Исследуется задача Валле-Пуссена для системы неоднородных линейных сингулярно возмущенных обыкновенных дифференциальных уравнений первого порядка. Особенность рассматриваемой задачи состоит в том, что спектр матрицы, являющейся коэффициентом линейной части системы, нестабилен в трех точках рассматриваемого отрезка. Требуется построить равномерное асимптотическое разложение решения задачи, модифицируя классический метод пограничных функций.
Бесплатно

Статья научная
Строится полное равномерное асимптотическое разложение по малому параметру решения первой краевой задачи. Первая краевая задача ставится для сингулярно возмущенного линейного неоднородного дифференциального уравнения в частных производных второго порядка с двумя независимыми переменными параболического типа. Задача исследуется на прямоугольнике. Особенности задачи - присутствие малого параметра перед оператором теплопроводности, существование угловых пограничных слоев на нижних углах прямоугольника. Требуется построить равномерное асимптотическое разложение решения первой краевой задачи на прямоугольнике, с любой степенью точности, при стремлении малого параметра к нулю. Асимптотическое разложение решения по малому параметру строится методом Вишика-Люстерника. При решении поставленной задачи нами используются: методы интегрирования обыкновенных дифференциальных уравнений, классический метод малого параметра, метод пограничных функций Вишика-Люстерника и принцип максимума. Как обычно, задача решается в двух этапах: в первом этапе строится формальное разложение решения первой краевой задачи, а во втором этапе оценивается остаточный член полученного разложения и этим доказывается, что полученное разложение действительно является асимптотическим на всем прямоугольнике. В первом этапе формальное асимптотическое решение ищется в виде суммы шести функций (решений): внешнее решение, определенное на всем прямоугольнике, погранслойное решение в малой окрестности нижней стороны прямоугольника, два боковых погранслойных решения в малой окрестности боковых сторон прямоугольника и два угловых погранслойных решения в окрестностях нижних вершин прямоугольника. Все эти погранслойные решения экспоненциально убывают вне пограничных слоев.
Бесплатно

Асимптотика решения сингулярно возмущенной задачи Дирихле со слабой особой точкой
Статья научная
Рассматривается задача Дирихле для сингулярно возмущенного, линейного, однородного обыкновенного дифференциального уравнения второго порядка с негладким коэффициентом в действительной оси. Подобные задачи встречаются в физике, технике, механике сплошной среды, гидродинамике и др. Целью исследования является развитие асимптотического метода пограничных функций Вишика-Люстерника-Васильевой-Иманалиева для сингулярно возмущенных дифференциальных уравнений, в случае, когда соответствующее невозмущенное уравнение имеет негладкое решение в рассматриваемой области. По терминологии А.М. Ильина подобные задачи называют бисингулярными. В работе доказывается возможность применения обобщенного метода пограничных функций к построению полного, равномерного асимптотического разложения решения краевой задачи для сингулярно возмущенного, линейного обыкновенного дифференциального уравнения второго порядка со слабой особой точкой или интегрируемой особой точкой. Построенное разложение решения является асимптотическим в смысле Эрдей. При построении равномерного асимптотического разложения решения задачи Дирихле использованы: метод малого параметра, метод математической индукции, классический метод пограничных функций, обобщенный метод пограничных функций и принцип максимума. С помощью принципа максимума получена оценка для остаточного члена асимптотического разложения, т. е. равномерное, полное асимптотическое разложение решения по малому параметру обосновано. Приведен конкретный пример.
Бесплатно

Асимптотически оптимальное решение модельной задачи для экранированного уравнения Пуассона
Статья научная
Экранированное уравнение рассматривается на прямоугольной области со смешанными краевыми условиями. При численном решении этой задачи предлагается использовать итерационную факторизацию после фиктивного продолжения дискретной задачи аппроксимирующей решаемую задачу. В итоге решение основывается на решении систем линейных алгебраических уравнений с матрицами треугольного вида, в которых ненулевых элементов не боле трех в каждой строке. При достаточно малой погрешности аппроксимации рассматриваемой задачи требуемая относительная погрешность предлагаемого итерационного процесса достигается за количество итераций, независящее от параметров дискретизации. Итерационный процесс оказывается методом, дающим оптимальную асимптотику по количеству операций в арифметических действиях. Разработанный итерационный процесс основывается на характерных особенностях указанной модельной задачи. Эта задача может быть получена в методах фиктивных компонент, пространств, когда решают краевые задачи для эллиптических уравнений в областях сложной формы. Приводится алгоритм реализации итерационного метода с выбором итерационных параметров в автоматическом режиме, с применением метода минимальных невязок, поправок. Это дает критерий для остановки итерационного процесса при получении указанной предварительно относительной погрешности. Приведен простейший тестовый пример для вычислительных экспериментов, подтверждающих асимптотическую оптимальность для итерационного метода в количестве вычислительных затрат. Реализация метода существенно основывается на использовании комплексного анализа.
Бесплатно

Асимптотические разложения функций Люстерника
Статья научная
Рассмотрена связь функций Люстерника и специального случайного процесса на локально-компактной группе. Получена предельная теорема для этого процесса. Получен главный член асимптотического разложения функций Люстерника.
Бесплатно

Асимптотическое поведение приближенного решения одномерной сингулярно возмущенной задачи Гольдштика
Статья научная
Рассматривается задача Коши для обыкновенного дифференциального уравнения с разрывной по фазовой переменной нелинейностью, в правую часть которого включен малый параметр. Наряду с этим тот же параметр возникает в записи начальных условий. Это приводит к ситуации, когда исследуемая задача из классической переходит в разряд сингулярно возмущенных. Решить задачу в такой постановке, во-первых, представляется возможным, исходя из понятия точного решения, средствами теории уравнений с разрывными нелинейностями; во-вторых, как сингулярно возмущенную - методом построения асимптотики погранслойного типа. Поскольку точное решение терпит разрыв в начальной точке, что в физическом смысле не оправданно, то производится аппроксимация уравнения с целью получить приближенное сглаженное решение. Для него требуется определенная сходимость к точному решению при стремлении малого параметра к нулю. Уравнение со сглаженной правой частью дает решение в квадратурах. Затем доказывается близость его асимптотики к точному решению. Из экспоненциальной близости асимптотики к приближенному решению следует для последнего требуемое поведение.
Бесплатно

Статья научная
Рассмотрено классическое конечное уравнение, содержащее параметр. При некотором условии на левую часть этого уравнения, после замены переменной она сводится к такому виду, что нетрудно провести классификацию случаев соотношений между составляющими ее частями. Каждый случай влечет за собой определенную ситуацию с существованием решения исследуемого уравнения, и показано, что оно может иметь, по сути, один и тот же стандартный вид. Для последнего приведен фундаментальный результат построения асимптотического разложения. Далее проводится доказательство формулы для вида коэффициентов искомого разложения, использующее индуктивный прием. Другой подход к поиску решения указанного уравнения связан с возможностью получения асимптотической формулы, с виду напоминающей бесконечную цепную дробь. Сначала естественным образом строятся рекуррентно приближения как последовательно уточняющиеся неравенства для решения, затем строго доказывается сходимость этих приближений. Поточечная сходимость отдельно четных и нечетных приближений вызвана их монотонностью и ограниченностью, а дополнительное условие непрерывной дифференцируемости входящих данных уравнения гарантирует и равномерную сходимость приближений к решению. В заключении приведен простой пример такой цепной дроби.
Бесплатно

Атомная и электронная структуры хиральных золотых нанотрубок
Статья научная
Приводятся результаты исследования атомной и электронной структуры золотых нанотрубок, не обладающих зеркальной симметрией. Построены элементарные ячейки нанотрубок (4, 3) и (5, 3) и проведено моделирование их свойств в рамках теории функционала электронной плотности с использованием периодических граничных условий. Установлено различное поведение двух типов межатомных расстояний при «скручивании» треугольной решетки каркаса нанотрубок, связи в одном из которых оказались заметно короче, чем в нанотрубках с зеркальной симметрией. Особенности электронной структуры и парциальных плотностей электронных состояний в целом оказались схожими у нанотрубок, обладающих зеркальной симметрией, и у тех, которые ее лишены.
Бесплатно

Аттракторы Лоренца в коллоидно-химических системах и их роль в фазовом течении оксигидратных гелей
Статья научная
Усложнение аттракторов течения гелей кремниевой кислоты заключается в обнаружении двух их составляющих, а именно, квазигиперболических аттракторов Лоренца и некоторой странной нехаотической составляющей (аттрактора), которая определяется как СНА (странный нехаотический аттрактор) в квазипериодическом отображении окружности. Это следствие все более существенного влияния вращательно-сдвигового воздействия коаксиальных цилиндров на гель.
Бесплатно

Безошибочное решение систем линейных алгебраических уравнений
Статья научная
В статье приведены теоретические и экспериментальные результаты по применению безошибочных вычислений для решения систем линейных алгебраических уравнений. В частности показано, что вычислительная битовая сложность решения систем линейных алгебраических уравнений с невырожденной матрицей не превышает О(fn), а вычислительная сложность нахождения нормального псевдорешения системы линейных алгебраических уравнений не превышает О(15log21), где / - число бит требуемых для представления исходных данных. Для уменьшения времени, требуемого для решения данной задачи целесообразно использовать параллельные вычисления. Показано, что при этом осуществляется ускорение в N раз, где N - число компьютеров, на которых решается задача.
Бесплатно

Бигармоническая задача Неймана с двойной инволюцией
Статья научная
Исследуются вопросы разрешимости нового класса краевых задач с нелокальными условиями Неймана для бигармонического уравнения в шаре. Нелокальные условия задаются в виде связи значений искомой функции в различных точках границы. При этом граничный оператор определяется с помощью матриц отображений типа инволюции. Доказана теорема существования и единственности решения рассматриваемой задачи и найдено интегральное представление решения рассматриваемой задачи
Бесплатно

Статья научная
Рассматривается семейство гладких динамических систем, заданных на плоскости и зависящих от двумерного параметра, меняющегося в окрестности нуля. Все системы семейства предполагаются инвариантными при преобразовании симметрии относительно начала координат. При нулевом значении параметра динамическая система имеет простейшее негрубое седло, обе выходящие сепаратрисы которого идут в то же седло, образуя две петли. Полицикл «восьмерка», состоящий из петель, является аттрактором этой системы. Он имеет окрестность U, в граничных точках которой все траектории систем семейства с параметрами, близкими к нулю, входят в U. При условии общего положения описываются бифуркации в окрестности U полицикла при изменении параметра. Значения параметра в малой окрестности нуля, при которых система является негрубой в U, образуют пять гладких кривых, входящих в начало координат, разбивающих эту окрестность на связные компоненты, для значений параметра из которых системы семейства являются грубыми. Для каждой компоненты описан топологический тип соответствующих динамических систем в U. В частности указаны области параметра, при которых система имеет в U единственный аттрактор - узел, два аттрактора - узел и цикл, гомотопный в U полициклу, или два симметричных цикла, гомотопных в U петлям из полицикла, а также три аттрактора - узел и два симметричных цикла.
Бесплатно

Бифуркации сшитого тройного цикла кусочно-гладкой непрерывной динамической системы
Статья научная
Исследование бифуркаций динамических систем, задаваемых кусочно-гладкими непрерывными векторными полями, интересно с теоретической точки зрения и полезно для приложений. Нелокальные бифуркации в типичных однопараметрических семействах таких систем на плоскости уже описаны. В настоящей работе рассматривается типичное двухпараметрическое семейство кусочно-гладких непрерывных векторных полей на плоскости. При нулевых значениях параметров предполагается, что у векторного поля есть негрубая устойчивая замкнутая траектория Г, имеющая с линией переключения поля простое касание. Получена бифуркационная диаграмма семейства - разбиение окрестности нуля на плоскости параметров на множества, для элементов которых соответствующие векторные поля семейства имеют одинаковое число и тип замкнутых траекторий в некоторой фиксированной окрестности траектории Г. В частности, показано, что максимальное число замкнутых траекторий, рождающихся из Г при изменении параметров, равно трем.
Бесплатно

Ближний порядок в сплавах Fe-Cr: моделирование методом решеточного Монте-Карло
Статья научная
Проведено исследование ближнего порядка в сплавах Fe-Cr методом Монте-Карло. Моделирование проводилось в рамках алгоритма Метрополиса в программном пакете LAMMPS. Анализ данных моделирования осуществлялся с помощью программного обеспечения для визуализации и анализа данных Ovito. Модель сплава предполагает, что структура решетки фиксирована и что взаимодействия существуют между первыми соседями и вторыми соседями. Установлено взаимодействие Fe-Cr с применением потенциала межатомного взаимодействия Abell-Brenner-Tersoff (ABOP). Были изучены различные концентрации примесей внедрения хрома в железе, а именно 5-50 ат. %. Рассчитана энергия смешения системы Fe-Cr при различных концентрациях примесей внедрения. Расчеты показали, что выбранный потенциал взаимодействия верно воспроизводит изменения знака энергии смешения как функции концентрации Cr. При применении в кинетическом моделировании по методу Монте-Карло потенциал правильно предсказывает разложение первоначально случайных сплавов Fe-Cr в зависимости от концентрации Cr. Определен параметр ближнего порядка Каули, который используется для количественной оценки степени упорядочения. В соответствии с экспериментами наблюдается сильная тенденция упорядочения в распределении Cr при низких концентрациях, что проявляется в отрицательных значениях параметров ближнего порядка.
Бесплатно

Борис Анисимович Бондаренко. К 90-летию со дня рождения
Персоналии
19 октября 2013 г исполнилось 90 лет со дня рождения и 60 лет научно-педагогической деятельности известного ученого, заслуженного деятеля науки Узбекистана, академика Академии наук Республики Узбекистан, доктора физико-математических наук, профессора Бориса Анисимовича Бондаренко. Профессор Бондаренко Б.А. широко известен не только у нас в стране, но и за рубежом. Значителен его вклад в математический анализ и теорию функций, дифференциальные уравнения и математическую теорию упругости, дискретную математику и комбинаторный анализ.
Бесплатно

Борис Владимирович Логинов. К 75-летию со дня рождения
Персоналии
14 ноября 2013 года исполнилось 75 лет доктору физико-математических наук, профессору кафедры «Высшая математика» УлГТУ Борису Владимировичу Логинову. Заслуженный деятель науки Российской Федерации, доктор физ.-мат. наук, профессор Б.В. Логинов - широко известен не только у нас в стране, но и за рубежом. Развиваемые им научные направления и методы оказали значительное и плодотворное влияние на развитие как чистой математики, так и её приложений в задачах механики, физики и вычислительной математики.
Бесплатно