Статьи журнала - Siberian Aerospace Journal

Все статьи: 341

Testing of spacecraft orientation and stabilization systems using starry sky simulators

Testing of spacecraft orientation and stabilization systems using starry sky simulators

Gorelko M.G., Murigin A.V.

Статья научная

The paper investigates the need to create a method of simulating the starry sky for testing spacecraft and conducting tests of orientation and stabilization systems in laboratory conditions. Modern space exploration and, as a consequence, the complexity of technical requirements for flight support facilities are constantly increasing, respectively, the requirements for ensuring the accuracy of determining the position and orientation of the spacecraft are increasing. The history of the development of astroorientation devices and, in particular, stellar sensors is given. The modern stage of development of stellar sensors came with the advent of matrix radiation receivers: charged coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) video matrices. Such stellar sensors are no longer tied to individual, predefined stars, but determine their orientation from images of groups of stars visible in the field of view of the device. Examples are given for their field of application, namely, determining the orientation of the sensor, pointing some device mounted on a spacecraft, and others. Modern requirements for astrogation are given. The basic principles of ground-based testing of the spacecraft orientation and stabilization system using starry sky simulators are considered. This is a stage of development and autonomous tests on a hardware and software stand of semi-natural modeling. To date, the ISS JSC enterprise has a complex modeling stand for conducting these types of spacecraft tests, using methods of both mathematical and semi-natural modeling, which includes various simulators of the starry sky. The development of these simulators has a long history, a comparative table of previously used simulators is given. The structures of both past and modern simulators of the starry sky are shown. The conclusions state the need to create a method that will simulate the rotation of the spacecraft at speeds up to 15–30 °/s. This method will allow testing the orientation and stabilization system of modern spacecraft.

Бесплатно

The aircraft hydraulic system units and pipelines heat exchange parameters study

The aircraft hydraulic system units and pipelines heat exchange parameters study

Nikolaev V.N.

Статья научная

The paper offers a method of mathematical modelling of aircraft hydraulic system thermal state. The given mathematical model presents a system of partial differential equations for carbon-fiber composite thermal insulation together with ordinary differential equations for hydraulic system components that describe their heat exchange with the ambient air and close-located surfaces. To solve the direct thermal state problem for hydraulic system components, i. e., to solve a stiff ordinary differential equation system, a Rosenbrock-type second order approximation numerical scheme for non-autonomous systems was applied. A solution of a partial differential equation system in Monte-Carlo method based on a probabilistic representation of the solution as a functional expectation of the diffusion process was also used. The inverse problem of the hydraulic system elements’ thermal state was solved applying a composition of the steepest descent method, Newton method and quasi-Newton method of Broydon-Fletcher-Goldfarb-Shanno. A mathematical model of the thermal state of a hydraulic system unit operating in an unpressurized aircraft compartment has been also developed, and the confidence intervals of each of the required model coefficients have been estimated using 2 1 α χ distribution at confidence probability = 0.95.

Бесплатно

The birth of Siberian satellite construction

The birth of Siberian satellite construction

Akbulatov E.S.

Статья

Бесплатно

The choice of the energy parameters of an oxygen-hydrogen propellant expander cycle rocket engine

The choice of the energy parameters of an oxygen-hydrogen propellant expander cycle rocket engine

Belyakov V.A.

Статья научная

In liquid-propellant rocket engines (LRE), made according to a gas-free scheme, the turbine of the turbopump unit (TPU) is driven by heated fuel in the coolant system of the combustion chamber (CC). The absence of a gas generator greatly increases the reliability of the LRE and provides a number of advantages over other engine schemes. At the moment, the existing oxygen-hydrogen gasless liquid-propellant rocket engines do not meet mod-ern tactical and technical requirements for the level of thrust and pressure in the (CC) engine. Therefore, it is necessary to study ways to increase the energy parameters of the liquid-propellant rocket engine and identify promising engine schemes. This article proposes schematic solutions for an oxygen-hydrogen LRE, provides an analysis of the influence of various factors on the power parameters of the engine, as well as recommendations for the design of gasless LRE. A mathematical model for calculating the main energy and geometric parameters of the engine has been developed. Prospective pneumohydraulic schemes of an oxygen-hydrogen gasless liquid-propellant rocket engine are proposed, depending on the tactical and technical requirements.

Бесплатно

The comparison of efficiency of the population for-mation approaches in the dynamic multi-objective optimization problems

The comparison of efficiency of the population for-mation approaches in the dynamic multi-objective optimization problems

Rurich M.A., Vakhnin A.V., Sopov E.A.

Статья научная

Dynamic multi-objective optimization problems are challenging and currently not-well understood class of optimization problems but this class is of great practical value. In such problems, the objective functions, their parameters and restrictions imposed on the search space can change over time. This fact means that solutions of the problem change too. When changes appear in the problem, an optimization algorithm needs to adapt to the changes in such a way that the convergence rate is sufficiently high. The work is devoted to the comparison of the different approaches to formation of a new population when changes in the dynamic multi-objective optimization problem appear: using solution, which obtained in the previous step; using a random generating of the population; partial using solutions which obtained in the previous step. In the first part of the article the classification of the changes in the problems is provided; the currently existing approaches to solving the problems based on evolutionary algorithms are considered. During the research NSGA-2 and SPEA2 algorithms are used to solving the dynamic optimization problems, the benchmark problems set is used to the comparison of the approaches. Obtained results being processed by Mann–Whitney U-test. It was obtained that changes rate in the problem affect the efficiency of the application of the solutions obtained in the previous step of new population the forming.

Бесплатно

The concept of an educational and scientific experiment for conducting on-orbit testing of any types of photovoltaic cell

The concept of an educational and scientific experiment for conducting on-orbit testing of any types of photovoltaic cell

Lukyanov M.M., Prokhorov G.P., Kutsenko V.S., Karpov E.S., Parshin A.S., Zuev D.M.

Статья научная

The article proposes the concept of an experiment for conducting flight testing of various samples of photo voltaic converters. The purpose of the experiment is to study the behavior of new types of solar cells in outer space. The research will be carried out by testing samples on board the spacecraft. The experiment will be carried out by a device that collects data on the electrical properties of solar cells. The information re-ceived will be presented in the form of a voltage characteristic. During the experiment, its dependence on external parameters will also be studied. In particular, the correlation of the current-voltage characteristic from the values of temperature and illumination of solar cells will be investigated. Based on the data ob-tained, the efficiency of photo voltaic converters will be determined. Their degradation as a result of expo-sure to cosmic ionizing radiation will also be studied. The authors are tasked with designing and develop-ing an experimental installation that will be a payload module of a small CubeSat-class spacecraft. Based on the results of the work, the appearance of the flight testing experiment was developed, the re-quirements for the payload module were determined and a project for its creation was proposed. At this stage, the circuit design and software implementation of the module itself are under development. In the course of the work, the main requirements that this module provides to the main systems of the spacecraft were also formulated. To carry out the mission of the experiment, it is planned to integrate the payload module on the plat-form of the ReshUCube-2 form factor 3U. This satellite will be equipped with equipment enabling techno-logical experiments.

Бесплатно

The definite questions of simulation of transformable space structures dynamics

The definite questions of simulation of transformable space structures dynamics

Zhang Zikun, Zimin V. N., Krylov A. V., Churilin S. A.

Статья научная

This paper describes large transformable space structures with various configuration in the folded transport position and in the open working one. As an example, simulation of transformable space structures dynamics is shown for the antenna circuit foldable load-bearing frame with diameter of 5 m. For investigation of the foldable frame deployment dynamics, a design scheme presented by a system of rigid bodies connected with each other by hinges is accepted as it is simple, but at the same time it considers features of the structure well enough. For performing stress analysis of the foldable frame elements during deployment, the frame shape at the certain time point of deployment, when relative velocities of adjacent elements are ultimate, is chosen. As a results of calculation using MSC.Adams software, positions, velocities and accelerations of the centres of mass of the foldable frame elements as well as the angular velocities and accelerations of the elements for each time step of the deployment are obtained. To perform stress analysis of the foldable load-bearing frame, finite element model of the frame is developed using MSC.Patran/Nastran software. As a results of investigation of stressed and deformed states of antenna circuit foldable frame elements both without taking into account damping and with consideration of damping, stresses arising in the foldable frame elements at the certain time points during deployment are found.

Бесплатно

The development and investigation of the efficiency of the differential evolution algorithm for solving multi-objective optimization problems

The development and investigation of the efficiency of the differential evolution algorithm for solving multi-objective optimization problems

Erokhin D. A., Akhmedova Sh. A.

Статья научная

In practice problems, which consist in the search of the best (optimal) solution according to the different irredundant and contradictory (conflicting) criteria, called multi-objective problems, are of frequent occurrence. One of the most commonly used methods for solving this kind of problems consists in combination of all criteria into the single one by using some linear relation. However, despite the simplicity of this method, solving problems with its help may cause other problems related to the determination of the mentioned linear combination, namely related to the determination of the weight coefficients for each criterion. The incorrect selection of these coefficients may lead to non-optimal solutions (according to the Pareto theory). In this regard, recently various population-based algorithms have been proposed for solving the described problems, which are the modifications of these population-based algorithms for solving singleobjective optimization problems. This article describes the developed modifications of the Differential Evolution algorithm (DE) for solving multi-objective unconstrained optimization problems based on the well-known NSGA (Nondominated Sorting Genetic Algorithm) and MOEA/D (Multiobjective Evolutionary Algorithm Based on Decomposition) schemes, which use the Pareto theory. The investigation into the efficiency of the Differential Evolution algorithm for solving multi-objective optimization problems in relation to the chosen mutation operator of the original DE algorithm and to the multi-objective scheme was conducted. The developed modifications were tested by using some well-known multi-objective real-valued optimization problems with 30 variables, such as ZDT1, ZDT2, ZDT3, etc. The practical problem of spacecraft control contour variant choice was solved as well. The experimental results show that better results were achieved by the Differential Evolution algorithm with the simplest mutation operators combined with the NSGA scheme. Thus, the applicability of the described modification for solving practical multi-objective optimization problems was demonstrated.

Бесплатно

The effect of laser texturing of the surface of a titanium alloy on the adhesive strength of adhesive joints

The effect of laser texturing of the surface of a titanium alloy on the adhesive strength of adhesive joints

Rudenko M.S., Girn A.V., Mikheev A.E., Oreshkin D.I.

Статья научная

The paper examines issues related to the influence of laser texturing of the surface of a titanium alloy on the characteristics of the titanium-carbon fiber adhesive joint. Using an ytterbium pulsed fiber laser, textures with a linear structure (0°–0° and 90°–90°) and a mesh structure (0°–90°, ±30°, ±45°, ±60°) were created on the surface of a titanium alloy. The surface roughness values in two perpendicular directions were determined, and microsections were made, which can be used to characterize the surface morphology of the titanium alloy. To determine the adhesive strength of the joint, samples with the same surface texture were glued together. The samples were glued together according to OST 1-90281–86. Bonding was carried out within 24 hours after laser surface treatment. Before gluing, the treated surface was cleaned with isopropyl alcohol. Adhesive joint area S = 300 mm2. Three-component adhesive VK-9 based on epoxy and polyamide resin was used as an adhesive. Laser surface treatment of titanium alloys increases the strength of the adhesive joint by more than 70 % relative to the untreated surface. This may indicate that the main mechanisms for increasing the strength of an adhesive joint are an increase in the contact area between the surface and the adhesive, and chemical modification that activates the surface. The processing texture has a lesser effect on the adhesive strength, provided that the specific surface energy of the laser processing is the same. When laser processing, you should pay great attention to the choice of surface texture, because certain textures can give an increase in strength by 20–30 %. If the type of load in the truss load elements is known, then it is better to use linear textures directed perpendicular to the direction of the load (for shear – texture 0°–0°; for torsion – texture 90°–90°). For mixed loads, it is better to use mesh structures ±30°, ±45°, ±60°, which resist loads in two directions.

Бесплатно

The feature of raising the “Express-AMU3” and “Express-AMU7” satellites into geostationary orbit

The feature of raising the “Express-AMU3” and “Express-AMU7” satellites into geostationary orbit

Yu. M. Ermoshkin, A. A. Vnukov, D. V. Volkov, Yu. V. Kochev, R. S. Simanov, E. N. Yakimov, S. Yu. Pridannikov

Статья научная

At present, in order to increase the launch mass, raising satellites into geostationary orbit by their own propulsion subsystem is widely used. Oly the JSC “Academician M. F. Reshetnev “Information Satellite Systems” applied such a scheme for several satellites of their own design - "Express-AM5", "Express-AM6", "Express-80" and "Express-103". Along with this, some diversity of approaches to the implementa-tion of this operation can be noted. In particular, the orbit raising of the above satellites was carried out using the onboard propulsion subsystem based on SPT-100 plasma thrusters. The operation was carried out by one or two thrusters. The use of two thrusters of the "Express-80" and"Express-103" satellites was due to the desire to keep within a reasonable amount of no more than six months with a significant increase in the output mass. Nevertheless, the duration of the orbit raising of about 150 days, which took place dur-ing the raising of satellite data, is also excessively long. It is evidemnt that it can be reduced, other things being equal, only by increasing the available thrust of the thrusters. This can be achieved both by increas-ing the thrust of individual units, and by increasing the number of simultaneously used thrusters. Therefore, for the new Express-AMU3 and Express-AMU7 satellites (with dimensions similar to the Express-80 and Express-103 satellites), for which a paired launch was also assumed, both of these methods were used. For orbit raising, two SPT-100V thrusters and, additionally, an SPT-140D type thruster were used. The total thrust of a cluster of thrusters made it possible to count on a significant reduction in the duration of orbit raising in comparison with the Express-80 and Express-103 satellites. The SPT-140 thruster developed by JSC "Experimental Design Bureau FAKEL" was used in Russia for the first time. For its power supply, the CCS-140D control and conversion device was specially created at the JSC "Design Bureau Polyus". The use of a combination of three thrusters made it possible to significantly reduce the duration of the opera-tion of raising into geostationary orbit.

Бесплатно

The influence of prefinishing operations at titanium alloys on the characteristics of MAO coatings

The influence of prefinishing operations at titanium alloys on the characteristics of MAO coatings

Mikheev A. E., Girn A. V., Ravodina D. V., Elizar'eva I. G.

Статья научная

Improving the reliability, service life and operational safety of titanium alloy structures exposed to thermal, chemical and mechanical stresses can be achieved by applying various protective coatings. One of the effective methods of protecting such alloys is the formation on their surface of oxide coatings that are resistant to external factors. Of great interest from this point of view is the method of micro-arc oxidation (MAO), which allows one to obtain multifunctional ceramic-like oxide coatings with unique properties. Such coatings can be used to create a durable heat and electrical insulating layer on parts, protect surfaces from erosion in high-speed gas flows, corrosion in aggressive environments and wear by friction, to increase the surface emissivity, etc. This method is well established for the oxidation of aluminum alloys. Despite the fact that the mechanism of coating formation during MAO is the same for aluminum and titanium alloys, there are certain differences in the structure and characteristics of the resulting coating. For example, it is believed that during the MAO treatment of aluminum alloys, preliminary surface preparation is not required and the adhesive strength is comparable with the strength of the substrate material. However, when processing titanium alloys, we noted cases of a significant decrease in adhesive strength. One of the reasons may be the lack of preliminary surface preparation before coating. Therefore, studies aimed at studying the influence of the method of surface preparation and the resulting roughness on the characteristics of the applied coatings are relevant.

Бесплатно

The influence of the method of fuel supply into the combustion chamber on the quality of mixing and on the carbon oxide formation

The influence of the method of fuel supply into the combustion chamber on the quality of mixing and on the carbon oxide formation

A. V. Baklanov

Статья научная

The burning of fuel in the combustion chamber of a gas turbine engine (GTE) is accompanied by formation of toxic substances. The most dangerous among them are carbon oxides that have a detrimental effect on humans and environment. In this regard the article is solving the urgent problem of determining the optimal method of gaseous fuel supplying in GTE combustion chamber to ensure low carbon-oxide emissions. The paper presents the design features of injectors that work with a separate supply of air and fuel. Natural gas is used as fuel. One of the considered injectors provides jet fuel supply by means of a perforated spray, and another one provides twisted fuel supply by means of a swirler built into the fuel channel. The main geometric parameters of the injectors are given as well, such as the size of the swirler, the number of blades, and the diameter of the output nozzle. In this regard the quality of air-fuel mixture preparation in a swirl jet in the outlet of the burner with two types of injector is defined. It is found that the best quality of mixing is ensured by the injector with jet spray. The design of a heat pipe simulator, in which the tested nozzle is placed, is considered. The design of a stand installation designed for testing injectors in a heat pipe simulator, as well as the modes under which these tests were carried out, are presented. The results were obtained in a heat pipe simulator with installed jet injectors and injectors with a swirling fuel jet. An analysis was conducted, which resulted in conclusions about the effectiveness of using jet injectors. According to the conducted research, the parameters of the injector with a swirling fuel jet are characterized by the presence of high values of CO levels in the combustion products, which is explained by the extremely low quality of mixing fuel with air and, consequently, low efficiency of fuel combustion. Jet fuel injection has low CO values, which indicates good quality of mixing fuel with air and high efficiency of a combustion process. As a result, we have received recommendations on setting the selected type of injectors in a full-size combustion chamber.

Бесплатно

The magnetic anisotropy comparison of polycrystalline and single-crystal Fe3Si films

The magnetic anisotropy comparison of polycrystalline and single-crystal Fe3Si films

Yakovlev I. A.

Статья научная

High-tech devices improvement requires development of technology and search for new materials from science. Currently, the development of the magnetism research field has reached a very broad knowledge, making it possible to create and study a variety of artificial ferromagnetic materials, which are already actively used in science and technology. The latest scientific knowledge shows that the same material in different states can exhibit different electrical and magnetic properties. Thus, thin magnetic films are actively used in modern devices. Physical processes in thin films proceed differently than in bulk materials. As a result, the film elements have characteristics that differ from those of bulk samples and make it possible to observe effects that are not characteristic of bulk samples. A film is a thin layer of a bound condensed substance, the thickness of which is compared with the distance of surface forces action; it is a thermodynamically stable or metastable part of a heterogeneous film-substrate system. Further researsh of film structures led to the creation and study of multilayer magnetic systems. In such structures, the presence of both various ferromagnetic materials layers and non-ferromagnetic interlayers is possible, and the multilayer systems properties can differ significantly from the properties of any system components. These materials also have many practical applications, including radio communications and geological exploration. In our experiment, ferromagnetic thin films of Fe3Si silicide were synthesized by molecular beam epitaxy with co-deposition of Fe and Si. A polycrystalline silicide film was obtained on a SiO2/Si(111) substrate, and a single-crystal film - on Si(111)7×7. The structure was investigated using the diffraction of reflected fast electrons directly during the growth process. The magnetic anisotropy of the obtained samples was studied applying the method of ferromagnetic resonance. It was found that the polycrystalline film is characterized by uniaxial magnetic anisotropy, which is 13.42 Oe and is formed as a result of “oblique” deposition, whereas the magnetic anisotropy for a single-crystal Fe3Si film is formed to a greater extent by internal magnetocrystalline forces.

Бесплатно

The main provisions of the methodology for ensuring the resistance of the onboard equipment of spacecraft to the effects of the radiation effects of outer space

The main provisions of the methodology for ensuring the resistance of the onboard equipment of spacecraft to the effects of the radiation effects of outer space

Maksimov I.A., Kochura S.G., Avdyushkin S.A.

Статья научная

In this paper, the issues of ensuring the resistance of the onboard equipment of spacecraft to the effects of ionizing radiation from outer space, which significantly limits the period of active existence of the space-craft, are considered. The paper describes the methodology for ensuring radiation resistance, developed by the specialists of JSC “ISS”. The result of the work done is to ensure the guaranteed performance of the target function by spacecraft with long period of active lifetime of 15 or more years. Among the outer space factors affecting the spacecraft, ionizing radiation of outer space is the main factor limiting the period of active existence. Exposure to energetic particles of ionizing radiation from outer space causes degradation of the electronic component base, which leads to failures and malfunctions of on-board equipment and degradation of its functional surfaces. Ensuring the radiation resistance of a spacecraft (SC) is a complex task, one of the stages of which is to determine the radiation resistance of components that complete the on-board equipment. As a result of accumulated experience in conducting radiation tests and analysis of the results, specialists of JSC “ISS” developed a methodology that allows to guarantee the radiation resistance of the spacecraft under conditions of tight production deadlines and optimized costs.

Бесплатно

The method of Haar sums for numerical solution of Poisson kinematic equations system determining an evolution of a spacecraft position

The method of Haar sums for numerical solution of Poisson kinematic equations system determining an evolution of a spacecraft position

K.A. Kirillov, E.V. Ovchinnikova, K.V. Safonov, G.P. Titov, A.I. Khokhlov, A.A. Gashin

Статья научная

The paper proposes the method for the numerical solution of Poisson kinematic equations system determining the evolution of the spacecraft position. The system of Poisson kinematic equations is used to designate the transition matrix from the coordinate system associated with the spacecraft at the selected time t1 to the coordinate system associated with the spacecraft at the current time t2. This matrix is used in the process of solving problems of determining a three-axis orientation of the spacecraft from the readings of the magnetometer using information about its angular velocities. The proposed method is based on replacing the derivatives of the desired functions in the Poisson kinematic equations by partial sums of series in the scaled Haar system. The partial sums of these series are generalized polynomials in the scaled Haar system. Hence, these sums are step (piecewise constant) functions. The estimates of the proposed method error are derived, which reveal that in the case of the coefficients of the equations which are functions matching the Lipschitz condition, the absolute error in calculating each of the elements of the transition matrix from one coordinate system to another is the value O(N–1) at N  , where N is the number of partitions of the segment [t1, t2] when constructing a grid of nodes involved in this method. It is proved that the complexity of constructing an algorithm for approximating the system of Poisson kinematic properties insignificantly exceeds the complexity of solving this system by Euler method, which has the first order of accuracy. The research presents the results of numerical experiments, showing that in certain cases the Haar sums method gives an error that is much smaller than the Euler method, and is almost identical to the errors of the Euler – Cauchy and Runge – Kutta methods of the 2nd order, the complexity of which is approximately two times greater than the complexity of the Haar sums method.

Бесплатно

The method of equivalent strength conditions in calculating composite structures with a regular structure using multigrid finite elements

The method of equivalent strength conditions in calculating composite structures with a regular structure using multigrid finite elements

Matveev А. D.

Статья научная

Plates, beams and shells with non-uniform and micro-inhomogeneities regular structure are widely used in aviation and rocket and space technology. At the preliminary design stage, it is initially important to know whether the design safety factor meets the specified strength conditions. To determine the margin factor, it is necessary to solve the elasticity problem for the designed structure by the finite element method (FEM), taking into account its inhomogeneous structure, which requires large computer resources. In this paper, we propose a method of equivalent strength conditions (MESC) for calculating the static strength of elastic structures with a inhomogeneous regular structure. The proposed method is reduced to the calculation of the strength of isotropic homogeneous bodies using equivalent strength conditions. The MESC is based on the following statement. For any composite body V0 , there exists such an isotropic homogeneous body Vb and such a number p (equivalence coefficient) that if the body Vb stock coefficient satisfies 0 nb the equivalent strength conditions 0 pn1 nb pn2 , then the body V0 stock coefficient satisfies n0 the given strength conditions n1 n0 n2 , and Vice versa, n1 , n2 – given, the coefficients 0 nb , n0 , meet the exact solutions of elasticity problems constructed for bodies V0 , Vb . The method under consideration is reduced to FEM strength calculation of isotropic homogeneous bodies, which is the easiest to implement and requires less computer memory than a similar calculation of composite bodies taking into account their inhomogeneous structure. The procedure for determining the equivalence coefficients for a number of composite plates, beams and shells of rotation is described. High-precision multigrid finite elements generating discrete models of small dimension and solutions with small error are used in the construction of elastic solutions according to FEM for isotropic homogeneous bodies. The adjusted equivalent strength conditions are of the form pn1(11) nb pn2 (12 ) , where nb is the body Vb reserve coefficient and the values 1 , 2 correspond to the approximate solution constructed for the body Vb . Implementation of FEM for multigrid discrete models requires several 103-106 times less computer memory than for basic models. The calculation of the strength of a beam with a micro-homogeneous regular structure with the help of MESC is given.

Бесплатно

The method of fictitious discrete models in the calculation of bodies with an inhomogeneous regular structure

The method of fictitious discrete models in the calculation of bodies with an inhomogeneous regular structure

Matveev A. D.

Статья научная

When the strength of elastic composite structures (plates, beams, shells) widely used in aviation, rocket and space technology is calculated with the finite element method (FEM), it is important to know the solu-tion error. To analyze the solution error, it is necessary to use a sequence of approximate solutions con-structed according to the FEM using the grinding procedure for basic discrete models (BMs), which take into account an inhomogeneous microheterogeneous structure of bodies within the microapproach. Dis-crete models obtained by grinding BMs have a high dimension, which makes it difficult to use the FEM for them. In addition, there are BMs of composite solids (CSs), for example, BMs of bodies with a microhet-erogeneous structure, which have such a high dimension that the implementation of the FEM for such BMs is practically impossible due to limited computer resources. To solve these problems, it is proposed to use fictitious discrete models in the calculations of CSs according to the FEM. In this paper we propose a method of fictitious discrete models (MFDM) for calculating the strength of elastic bodies with an inhomogeneous microheterogeneous regular structure. The MFDM is implemented with the help of the FEM using corrected strength conditions, which take into account the error of ap-proximate solutions. The method is based on the following provision. We believe that BMs of CSs generate solutions that slightly differ from the exact ones. Such BMs always exist for CSs due to the convergence of the FEM. The calculation of CSs according to the MFDM is reduced to the construction and calculation of the strength of fictitious discrete models (FMs), the dimensions of which are smaller than the dimension of the BMs. FMs reflect: the shape, characteristic dimensions, fastening, loading and the type of the inhomogeneous structure of CSs and the distribution of the elastic moduli corresponding to the BM of the CS. The sequence consisting of the FM converges to the BM, i.e., the limiting FM coincides with the BM. The convergence of such a sequence ensures uniform convergence of the FM stresses to the corresponding BM stresses. The implementation of the FEM for FMs with the use of multigrid finite elements leads to a large saving of computer resources, which makes it possible to use the MFDM for strength calculations of bodies with a microheterogeneous regular structure. Calculation of the CS strength according to the MFDM requires times less computer memory volume than a similar calculation using the BM of the CS, and does not contain the procedure for grinding the BM. The given example of calculating the strength of a beam with an inhomogeneous regular fibrous structure according to the MFDM shows its high efficiency. Applying the adjusted strength conditions allows using approximate solutions with larger errors in CS strength calculations, which leads to improving the efficiency of the MFDM.

Бесплатно

The method of synthesis of the digital controller for a solar energy conversion channel of the solar battery in the power supply system of a spacecraft

The method of synthesis of the digital controller for a solar energy conversion channel of the solar battery in the power supply system of a spacecraft

Shkolnyi V. N., Semenov V. D., Kabirov V. A., Sukhorukov M. P., Torgaeva D. S.

Статья научная

A method of synthesizing a digital controller for a solar energy conversion channel in a power supply system of a spacecraft is presented. The method is based on the initial functional diagram of the pulse converter and the method of switching discontinuous functions. In accordance with the technique, which is formally presented in the form of eight consecutively executed items, a block diagram of the shunt converter has been developed in the basis of switching functions, which is taken as an example for testing the technique. The shunt converter is one of the three energy conversion channels in modern power supply systems of a spacecraft. The block diagram showed that all nonlinearity of the system can be reduced to nonlinearities of two multiplication links and nonlinearity of a pulse-width modulator. The possibility and acceptability of joint linearization of each of the specified nonlinear multipliers with a pulse-width modulator at the selected operating point is shown. A linearized block diagram of the control object was obtained, after which the transformation and simplification of the block diagram to a convenient form for calculation was carried out. Using the transfer functions of the linearized block diagram, the logarithmic frequency characteristics were calculated analytically and the results of their comparison with the frequency characteristics obtained experimentally on a simulation model, which confirmed their identity in the working frequency domain, were presented. At the same time, the specified simulation model of a shunt pulse converter, built in the Simulink package of the Matlab design environment, took into account all the mentioned nonlinearities of the real converter. According to the obtained logarithmic characteristics, a classical synthesis of the analogue prototype correcting section was produced. The transition from the analog correcting section of the prototype to the implementation of the digital correcting section is shown. Simulation modeling of a closed-loop power supply system with a synthesized analog controller, in its mode of operation from a solar battery, confirmed the correctness of the methodology and the achievement of the goals. The results of the work are intended to create a new onboard energy conversion equipment for power supply systems of high-potential spacecrafts. The scope of application of the project results is space instrumentation.

Бесплатно

The method of the automation of the plasmotron movement by six-axis robotic manipulator

The method of the automation of the plasmotron movement by six-axis robotic manipulator

Kalashnikov A.S., Rudenko M.S., Kucherenko A.D., Girn A.V., Mikheev A.E.

Статья научная

The article presents a method for automating the creation of trajectories of the plasmotron movement by a six-axis robotic manipulator. The automation system was created on the basis of an industrial robot from KUKA. The automation of the creation of trajectories of the plasmatron over the surface of the part is implemented as follows: the trajectory of the plasmatron is created in a graphic editor in the .dwg format. The created file is loaded into the CAM program for CNC machines. A CAM program converts a vector or an area specified by vectors into a control command in g-code format, which is then converted to KRL by a program written in the Python programming language. The development of the program consisted of two stages: the creation of rectilinear movements and the creation of curvilinear movements. The result of the method is presented.

Бесплатно

The method of the disk friction determining of low mass flow centrifugal pumps

The method of the disk friction determining of low mass flow centrifugal pumps

Zuev A. A., Nazarov V. P., Arngold A. A., Petrov I. M.

Статья научная

Low mass flow centrifugal pumps are currently widely used in the energy supply system of liquid rocket engines, the engines of correction, docks, consisting of on-Board power sources on-Board sources power supply system of fuel components in the in gas generator systems for inflating fuel tanks, and in temperature control systems of aircraft and spacecraft. When designing low mass flow centrifugal pumps for aerospace purposes, methods for calculating and optimizing the flow rate are often used corresponding to the design methods of full-size centrifugal pumps, which limits the mode and design potential of pumps and affects their energy characteristics and reliability. Reliability requirements often lead to the need to reserve units and fuel-supply systems. Despite the large amount of research works, the issues of reliable design of low mass flow centrifugal pumps with high energy and operational parameters for spacecraft and aircraft remains an urgent task. The article analyses the operational parameters of low mass flow centrifugal pumps used in aircraft and spacecraft power systems. Taking into account working fluid used and the temperature range, it was found that a laminar rotational flow with Reynolds number characteristic Re 103 3105 is realized in the lateral cavity between the impeller and the pump housing. The determination of power losses on disk friction of the impeller technique is developed taking into account design features and the applied schemes. Equations for determining the disk friction coefficients are consistent with the dependencies obtained by other authors. The obtained equations for the laminar rotational flow made it possible to determine the dependences for the resistance moment and the disk friction power of the impeller determining of a low mass flow centrifugal pump.

Бесплатно

Журнал