Статьи журнала - Вестник Южно-Уральского государственного университета. Серия: Химия

Все статьи: 614

Обоснование генерирования цвиттерионов оксиводы и синглетных атомов кислорода из молекул пероксида водорода в водных растворах

Обоснование генерирования цвиттерионов оксиводы и синглетных атомов кислорода из молекул пероксида водорода в водных растворах

Чумаков А.А., Котельников О.А., Слижов Ю.Г., Минакова Т.С.

Статья научная

Пероксид водорода широко используется в качестве окислителя. Результаты термодинамических расчётов свидетельствуют о невозможности самопроизвольного генерирования гидроксильного и гидропероксильного радикалов из пероксида водорода в водных растворах. Однако при этом пероксид водорода спонтанно разлагается в реакционных системах Фентона с двухвалентным и трёхвалентным железом и двухвалентной медью. Хелатные комплексы ксиленолового оранжевого и пиридоксина с железом(III) окисляются пероксидом водорода самопроизвольно и быстро. Наконец, пероксид водорода в водных растворах спонтанно окисляет атомы серы анионов тиосульфата (гипосульфита) и молекул бензилпенициллина. Таким образом, интермедиаты, генерируемые из молекул пероксида водорода, с большой вероятностью отличаются по природе от радикалов гидроксила и гидропероксила. Теоретическое моделирование показывает, что молекула пероксид водорода может отдавать или акцептировать протон, а также изомеризоваться в биполярный ион (цвиттерион) оксиводы. Схема внутримолекулярной передачи протона с последующим внутримолекулярным диспропорционированием оксиводы способна универсально объяснять все случаи разложения и окислительной реактивности пероксида водорода в водных системах. Цвиттерион оксиводы (оксида воды) характеризуется локализацией разноименных зарядов на соседних непосредственно связанных кислородных атомах. Это обуславливает смещение электронной плотности в сторону положительно заряженного атома кислорода и, в итоге, диссоциацию межкислородной связи по гетеролитическому типу с высвобождением молекулы воды и образованием атома кислорода (оксена) в синглетном квантовом состоянии. Данный атом имеет вакантную атомную орбиталь. Процессы S-окисления бензилпенициллина и тиосульфата протекают через акцепцию неподеленных электронных пар атомов серы вакантными атомными орбиталями синглетных атомов кислорода. Нами аргументирована схема оксен-опосредованного диспропорционирования пероксида водорода. Синглетный атом кислорода реагирует со второй молекулой пероксида водорода, акцептируя вакантной атомной орбиталью неподеленную электронную пару одного из двух атомов кислорода. Процесс может быть назван O-окислением пероксида водорода, он приводит к образованию триоксидана (триоксида диводорода), который быстро распадается на воду и синглетный молекулярный кислород (дикислород). Нами предположен механизм обращения электронного спина в ходе тушения синглетного состояния дикислорода и перехода в триплетное состояние. Допущено формирование димерного ассоциата из молекул синглетного дикислорода, являющихся антиподами по орбитальному моменту. Внутри ассоциата осуществляется электронообменное взаимодействие, приводящее к образованию двух молекул триплетного дикислорода, являющихся антиподами по спиновым моментам: одна молекула со спином +1, другая молекула со спином -1. Для любой реакционной системы Фентона, цвиттерионизация пероксида водорода и внутримолекулярное диспропорционирование оксиводы протекают в кислотно-основном комплексе Льюиса с ионом металла. Синглетный оксен остаётся в комплексе с ионом металла. Двухвалентный ион железа меняет свою степень окисления на трёхвалентную в результате быстрой и неизбежной передачи одного электрона внутри комплекса железа(II)-оксена. Формирование комплекса железа(III)-оксильного радикал-аниона (альфа-комплекса) в классической системе Фентона является представлением, альтернативным широко распространённым концепциям генерирования гидроксильного радикала или катиона оксожелеза(IV). Нами воспроизведены реакции электро-Фентона - взаимодействия ионов металлов переменной валентности с электрогенерированным пероксидом водорода. При этом, предположительно, получены вольтамперометрические сигналы атомов синглетного кислорода и оксильных радикал-анионов (альфа-кислородных частиц). Оксиводно-оксеноидная концепция успешно применима для объяснения каталитической активности редокс-неактивных веществ, для которых в принципе исключаются схемы генерирования свободных радикалов или гипервалентных форм. Нами аргументируются механизмы гидропероксидной монокислородной и дикислородной окислительной функционализации в органическом синтезе.

Бесплатно

Образование высокоэнтропийных октаэдрических кристаллов в многокомпонентных оксидных системах

Образование высокоэнтропийных октаэдрических кристаллов в многокомпонентных оксидных системах

Винник Денис Александрович, Трофимов Евгений Алексеевич, Живулин Владимир Евгеньевич, Зайцева Ольга Владимировна, Жильцова Татьяна Анатольевна, Репин Дмитрий Викторович

Статья научная

В рамках выполнения проекта по созданию высокоэнтропийных кристаллических фаз со структурой магнетоплюмбита проанализированы химические составы, кристаллическая структура и условия образования получающихся в качестве побочных продуктов или результатов неудачных экспериментов многокомпонентных кристаллов со структурой шпинели, включая кристаллы, состав которых ранее не был описан в литературе. Определён перечень химических элементов, которые могут быть основными компонентами фаз с такого рода структурой. В частности, установлено, что состав полученных кристаллов шпинели может быть выражен брутто-формулами (Ni,Co,Mn2+)(Al,Cr,Fe,Ti,Ga,Mn3+)2O4 и (Co,Fe2+, Mn2+)(Al,Cr,Ti,V,Ga,Fe3+, Mn3+)2O4. При этом Ba, Sr, Ca, K, Pb, La и Bi в таких фазах могут присутствовать в качестве минорных примесей. Их добавление, вероятно, не сказывается заметным образом на стабилизации получаемой фазы со шпинельной структуры. Растворимость индия In, судя по полученным данным, в твёрдых растворах такого рода может быть ограниченной.Сделаны представляющие практический интерес важные выводы об условиях, которые необходимо выполнять в процессе выращивания из высокоэнтропийных расплавов. В частности, показано, что при выращивании монокристаллов из расплава следует учитывать необходимость дополнительного его окисления по сравнению с уровнем, который могут обеспечить сам состав расплава и атмосфера воздуха, в которой проводились эксперименты. Это связано с тем, что увеличение температуры синтеза (в частности, с 1400 до 1600 °С) приводит к ситуации, когда большая доля атомов железа и марганца восстанавливается до степени окисления +2, что способствует образованию больших количеств октаэдрической фазы и негативно сказывается на возможности формирования кристаллов со структурой магнетоплюмбита. Ключевые слова: высокоэнтропийные кристаллы со структурой шпинели, экспериментальное получение, состав, влияние температуры.

Бесплатно

Образование двух типов пластинчатых кристаллов в реакции иттербия(0) и оксида иттербия(III) с (1-гидрокси­этилиден)дифосфоновой кислотой

Образование двух типов пластинчатых кристаллов в реакции иттербия(0) и оксида иттербия(III) с (1-гидрокси­этилиден)дифосфоновой кислотой

Семенов Владимир Викторович, Золотарева Наталья Вадимовна, Новикова Ольга Валерьевна, Петров Борис Иванович, Разов Евгений Николаевич, Круглов Александр Валерьевич

Статья научная

Взаимодействие стружки иттербия(0) с одним эквивалентом (1-гидроксиэтилиден)дифосфоновой кислоты (H4L) в водной среде приводит к получению трудно растворимого гидрата (1-гидрокси­этилиден)дифосфоната иттербия(III) YbHL·H2O. По данным сканирующей электронной микроскопии соединение выпадает из водного раствора в виде тонких пластинчатых кристаллов длиной до 7 мкм и шириной до 2 мкм. Их толщина может достигать 0,3-0,5 мкм. Пластинки изгиба практически не имеют, перепад высот на плоской ровной части достигает всего 5-7 нм. В реакции с оксидом иттербия Yb2O3 также образуется YbHL·H2O. Выделяющееся из водного раствора соединение состоит из пластинчатых кристаллов, отличающихся по форме от полученных из металла. Пластинки более тонкие, сильнее изогнуты, упакованы в стопки, по форме приближаются к квадрату со стороной 5-7 мкм. По данным атомно-силовой микроскопии толщина пластинки составляет 1 мкм, средняя шероховатость гладкой поверхности Ra = 27 нм (среднее арифметическое отклонение), RMS = 35 нм (среднеквадратичное отклонение). При взаимодействии с 2-аминоэтанолом гидрат (1-гидроксиэтилиден)­дифосфоната иттербия(III) YbHL·H2O не переходит в раствор, а дает вязкий золь, после сушки которого получен комплекс YbHL·H2NCH2CH2OH·4H2O. Выделенные соединения изучены методами элементного анализа, инфракрасной спектроскопии, сканирующей электронной и атомно-силовой микроскопии, рентгеновского фазового анализа.

Бесплатно

Образование ониевых соединений сурьмы в реакциях окислительного присоединения

Образование ониевых соединений сурьмы в реакциях окислительного присоединения

Шарутин В.В., Сенчурин В.С., Ращупкина А.К.

Статья научная

Взаимодействием трис(3-трифторметилфенил)сурьмы с 2,4-диметилбензолсульфоновой кислотой в присутствии трет-бутилгидропероксида (мольное соотношение 1:2:1) в эфире получен с выходом 34 % 2,4-диметилбензолсульфонат тетракис(3-трифторметилфенил) сурьмы (1), который был идентифицирован методами ИК-спектроскопии и рентгеноструктурного анализа. РСА проводили на дифрактометре D8 QUEST фирмы Bruker, кристаллографические характеристики элементарной ячейки соединения следующие: пространственная группа моноклинная Р2 1/c, а = 12,160(8), b = 14,561(11), c = 21,755(14) Å, β = 97,333(18), V = 3821(5) Å3, Z = 4, ρвыч = 1,543 г/см3, m = 0,869 мм-1 , F(000) = 1760, размер кристалла 0,56´0,15´0,1 мм, диапазон сбора данных по 2θ, град: 6,06-49,28, диапазон индексов -14 ≤ h ≤ 12, -17 ≤ k ≤ 17, -25 ≤ l ≤ 25, число измеренных рефлексов 23742, число независимых рефлексов 6398, Rint = 0,0828, GOOF = 1,017, число параметров 480, R1 = 0,0568, wR2 = 0,1414. По данным РСА, атомы сурьмы в соединении имеют искаженную тригонально-бипирамидальную координацию с атомом кислорода сульфонатной группы в аксиальном положении. Аксиальный угол СSbO составляет 174,08(18)º. Сумма экваториальных углов CSbC равна 352,8(2)º, расстояния Sb-Сэкв (2,121(6), 2,121(6), 2,122(6) Å) значительно короче длины связи Sb-Сакс (2,129(7) Å) и Sb-O (2,463(4) Å). Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджской базе структурных данных (№ 2417629; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data_request/cif).

Бесплатно

Образования титана никеля в мелкодисперсной системе оксидов TiO2 (анатаз) -NiO

Образования титана никеля в мелкодисперсной системе оксидов TiO2 (анатаз) -NiO

Сериков Александр Сергеевич, Гладков Владимир Евгеньевич, Жеребцов Дмитрий Анатольевич, Колмогорцев Алексей Михайлович, Викторов Валерий Викторович

Статья обзорная

Физико-химическими методами (РСА, ДТА, масс-спектрометрия, маг-нетохимический анализ) исследован фазовый переход анатаз- рутил в мелкодисперсных порошках ТiO2, отличающихся способом получения. Установлено, что температура фазового перехода зависит от предыстории получения анатаза. При прокаливании эквимолярной смеси TiO2 (анатаз) -Ni(N03)2 и ТiO2 (анатаз)-(NiOH)2CO3 образуется только титанат никеля, других оксидных соединений с Ti (IV) и Ni (II) не обнаружено. Установлено, что фазовый переход анатаз-рутил препятствует образованию титаната никеля в интервале температур 700-850 °С.

Бесплатно

Общее уравнение для описания равновесий кислотно-основных систем

Общее уравнение для описания равновесий кислотно-основных систем

Голованов Владимир Иванович, Кузнецов Сергей Михайлович

Статья научная

Предложено уравнение, позволяющее с единых позиций описывать не только кривые титрования, но также буферные и другие свойства смесей протолитов произвольного состава. Универсальность уравнения обусловлена тем, что при его выводе использовали условие протонного баланса в сочетании с условием гидроксильного баланса, а также функцию Бьеррума. Сформулировано простое правило записи общего уравнения и его следствий. Общность уравнения показана на ряде примеров.

Бесплатно

Однореакторный синтез 3,4-дитиосемикарбазона дегидроаскорбиновой кислоты

Однореакторный синтез 3,4-дитиосемикарбазона дегидроаскорбиновой кислоты

Рыбакова Анастасия Владимировна, Слепухин Павел Александрович, Ким Дмитрий Гымнанович

Краткое сообщение

Показано, что при окислении аскорбиновой кислоты гипохлоритом натрия и последующем действии тиосемикарбазидом образуется 3,4-дитиосемикарбазон дегидроаскорбиновой кислоты, структура которого исследована методами РСА, ЯМР 1Н и ИК спектроскопии.

Бесплатно

Окисление три-орто-толилсурьмы в присутствии пероксида, кислорода воздуха и 2,5-диметилбензолсульфоновой кислоты. Строение сульфо-(3-оксо)-трис-(2-оксо)-окта-орто-толилсурьмы

Окисление три-орто-толилсурьмы в присутствии пероксида, кислорода воздуха и 2,5-диметилбензолсульфоновой кислоты. Строение сульфо-(3-оксо)-трис-(2-оксо)-окта-орто-толилсурьмы

Шарутин Владимир Викторович, Сенчурин Владислав Станиславович

Статья научная

Взаимодействием три- орто -толилсурьмы с 2,5-диметилбензолсульфоновой кислотой в присутствии трет -бутилгидропероксида (3:2:3 мольн.) в эфире на воздухе синтезирован комплекс сульфо-(μ3-оксо)- трис -(μ2-оксо)-окта- орто -толилсурьма (1), выход которого после перекристаллизации из смеси толуол:октан (5:1 объемн.) составил 63 %. По данным рентгеноструктурного анализа, проведенном при 293 К на автоматическом четырехкружном дифрактометре D8 Quest Bruker (двухкоординатный CCD - детектор, Мо К α-излучение, λ = 0,71073 Å, графитовый монохроматор) кристаллов 1 [C42H42O8SSb3, M 1072,07; сингония моноклинная, группа симметрии P2 1 /c ; параметры ячейки: a = 11,434(5), b = 21,609(11), c = 18,737(8) Å; α = 90,00 град., β = 104,778(14) град., γ = 90,00 град.; V = 4476(4) Å3; размер кристалла 1,05×0,65×0,11 мм; интервалы индексов отражений -17 ≤ h ≤ 17, -33 ≤ k ≤ 33, -28 ≤ l ≤ 28; всего отражений 125015; независимых отражений 17125; Rint 0,0579; GOOF 1,044; R1 = 0,0734, wR 2 = 0,1886; остаточная электронная плотность 2,75/-1,12 e/Å3]. В трехъядерном комплексе два атома сурьмы гексакоординированы (CSbO 159,4(2)-165,4(3)°; OSbO 164,9(2) и 167,4(2)°), третий атом сурьмы находится в сильно-искаженной тригонально-бипирамидальной координации (аксиальный угол OSbC 161,9(3)°, экваториальные углы OSbC и OSbO изменяются в интервале 110,5(2)-120,8(4)°). Длины связей Sb-С, μ2-O-Sb и μ3-O-Sb составляют 2,095(9)-2,136(7) Å, 1,904(5)-2,165(5) Å и 2,008(4)-2,387(5) Å соответственно. Мостиковый бидентатный сульфатный лиганд связан с атомами сурьмы, расстояния Sb-Oсульф. равны 2,100(5) и 2,108(5) Å. Полные таблицы координат атомов, длин связей и валентных углов для структуры 1 депонированы в Кембриджском банке структурных данных (№ 1866027; deposit@ccdc.cam.ac.uk; http://www.ccdc. cam.ac.uk).

Бесплатно

Окисление триарилсурьмы Ar3Sb(Ar= 4-FC6H4,(4-F3C)C6H4,(2-MeO)C6H4,4-BrC6H4,3-MeC6H4, 4-MeC6H4,(4-Me2N)C6H4,(2-MeO)(5-Br)C6H3)] пероксидом бензоила

Окисление триарилсурьмы Ar3Sb(Ar= 4-FC6H4,(4-F3C)C6H4,(2-MeO)C6H4,4-BrC6H4,3-MeC6H4, 4-MeC6H4,(4-Me2N)C6H4,(2-MeO)(5-Br)C6H3)] пероксидом бензоила

Доценко Виктор Викторович, Головин Михаил Сергеевич

Статья научная

Окислением триарилсурьмы Ar3Sb пероксидом бензоила в бензоле получены соответствующие дибензоаты Ar3Sb[OC(O)Ph]2 [Ar = 4-FC6H4 (1), (4-F3C)C6H4 (2), (2-MeO)C6H4 (3), 4-BrC6H4 (4), 3-MeC6H4 (5), 4-MeC6H4 (6), (4-Me2N)C6H4 (7), (2-MeO)(5-Br)C6H3] (8) c выходом до 94 %. Соединения 1-8 идентифицированы методами ИК-спектроскопии и элементного анализа, а соединения 1, 2 - и рентгеноструктурным анализом. Согласно данным РСА, проведенного на дифрактометре D8 QUEST фирмы Bruker, кристаллографические параметры элементарной ячейки соединений: 1, пространственная группа Р -1, а = 9,1154(3), b = 11,0918(3), c = 14,5437(4) Å, α = 69,9850(10)°, β = 87,5980(10)°, γ = 89,8020(10)°, V = 1380,34(7) Å3, ρвыч = 1,562 г/см3, Z = 1, F (000) = 648,0, 2θ 5,96-52,88°, размеры кристалла 0,29 ´ 0,2 ´ 0,2 мм, интервалы индексов отражений -11 £ h £ 11, -13 £ k £ 13, -18 £ l £ 18, всего отражений 31527, независимых отражений 11156, переменных уточнения 721, GOOF 1,069, R 1 = 0,0265, wR 2 = 0,0549; 2, пространственная группа Р- 1, а = 10,944(7), b = 12,548(9), c = 13,730(14) Å, α = 83,52(4)°, β = 82,34(5)°, γ = 64,52(3)°, V = 1684(2) Å3, ρвыч = 1,577 г/см3, Z = 2, F (000) = 792,0, 2θ 4,88-59,22°, размеры кристалла 0,32 ´ 0,28 ´ 0,19 мм, интервалы индексов отражений -14 £ h £ 14, -17 £ k £ 16, -18 £ l £ 18, всего отражений 44329, независимых отражений 8289, переменных уточнения 442, GOOF 1,053, R 1 = 0,0482, wR 2 = 0,1287. Кристаллы 1 состоят из двух типов кристаллографически независимых молекул (А и В), геометрические параметры которых незначительно отличаются друг от друга. Атомы сурьмы в 1 и 2 имеют координацию тригональной пирамиды с бензоатными лигандами в аксиальных положениях. Длины связей Sb-C равны 2,042(11), 2,081(11), 2,143(9) Å для 1А, 2,091(10), 2,146(11), 2,162(9) Å для 1В и 2,134(5), 2,135(4), 2,142(4) Å для 2. Расстояния Sb-O составляют 2,117(7), 2,128(8) Å для 1А, 2,117(7), 2,128(8) Å для 1В и 2,127(3), 2,133(3) Å для 2, однако атомы металла также координированы карбонильными атомами кислорода бидентатных карбоксилатных лигандов (расстояния Sb∙∙∙O=C изменяются в интервалах 2,669(9)-2,876(9) Å). Экваториальные углы CSbC неравноценны: наибольший угол наблюдается со стороны внутримолекулярных контактов [103,6(5), 109,0(4), 147,2(4)° для 1А, 105,0(4), 108,1(4), 146,6(4)° для 1В и 104,39(17), 105,33(17), 150,21(16)° для 2]. Аксиальные углы ОSbО составляют 175,3(4), 176,0(4) и 175,10(10)°соответственно. Полные таблицы координат атомов, длин связей и валентных углов для структур депонированы в Кембриджском банке структурных данных (№ 1016479 для 1, № 2235776 для 2; deposit@ccdc.cam.ac.uk; https://www.ccdc.cam.ac.uk).

Бесплатно

Окисление трис(2-метокси-5-бромфенил)сурьмы трет-бутилгидропероксидом в присутствии соединений, содержащих подвижный атом водорода

Окисление трис(2-метокси-5-бромфенил)сурьмы трет-бутилгидропероксидом в присутствии соединений, содержащих подвижный атом водорода

Ефремов Андрей Николаевич, Шарутин Владимир Викторович

Статья научная

Окисление трис (2-метокси-5-бромфенил)сурьмы гидропероксидом третичного бутила в диэтиловом эфире в присутствии воды, бензойной кислоты, 2,6-дигидроксибензойной кислоты и 2-хлор-4-фторфенола приводит к образованию оксида трис (2-метокси-5-бромфенил)сурьмы (1), дибензоата трис (2-метокси-5-бромфенил)сурьмы (2), m-оксо-[ гексакис (2-метокси-5-бромфенил)- бис (2,6-дигидроксибензоато)дисурьмы] (3), m-оксо-[ гексакис (2-метокси-5-бромфенил)- бис (2-хлор-4-фторфеноксо)дисурьмы] (4) соответственно. Соединения идентифицированы методом рентгеноструктурного анализа. По данным РСА, кристалл сольвата 1 с хлороформом состоит из центросимметричных биядерных молекул, содержащих цикл Sb2O2 c тетрагональной координацией атомов сурьмы (длины связей Sb-O равны 1,961(4) и 2,041(5) Å, расстояния Sb-C составляют 2,114(6)-2,153(6) Å). В сольвате 2 с бензолом атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода карбоксилатных лигандов в аксиальных положениях (Sb-O 2,075(4), 2,105(4) Å), карбонильные атомы кислорода координированы с центральным атомом металла (Sb∙∙∙O=C 3,023(6), 3,077(8) Å), длины связей Sb-C (2,104(5)-2,112(5) Å) значительно меньше, чем в 1. Интервалы изменения длин связей Sb-C в практически линейной биядерной молекуле сольвата 3 с ацетонитрилом (угол SbOSb равен 178,05(18)°) составляют 2,101(5)-2,106(5) и 2,100(5)-2,104(5) Å. Длины связей атомов сурьмы с мостиковым атомом кислорода (1,925(4), 1,936(4) Å) меньше суммы ковалентных радиусов сурьмы и кислорода и расстояний между атомом сурьмы и терминальным карбоксильным лигандом (Sb-O 2,263(4), 2,214(4) Å). Карбонильные атомы кислорода координированы с центральным атомом металла (Sb∙∙∙O=C 3,484(8), 3,512(9) Å) в меньшей степени, чем в 2. В кристалле сольвата 4 с бензолом присутствуют два типа кристаллографически независимых угловых молекул (углы SbOSb 163,75(18)°, 164,27(19)°) разница длин Sb-Oмост (1,939(11)-1,981(13) Å) и Sb-Oтерм (2,096(11)-2,208(11) Å) не такая резкая, как в случае комплекса 3. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 2070383 для 1; № 2074511 для 2; № 1970910 для 3; № 2064392 для 4; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

Бесплатно

Окисление трис(2-метоксифенил)сурьмы трет-бутилгидропероксидом в присутствии карбоновой кислоты

Окисление трис(2-метоксифенил)сурьмы трет-бутилгидропероксидом в присутствии карбоновой кислоты

Шарутин В.В., Шарутина О.К., Палилова В.В.

Статья научная

Окисление трис(2-метоксифенил)сурьмы трет-бутилгидропероксидом в присутствии карбоновой кислоты в тетрагидрофуране или диэтиловом эфире приводит к образованию бис(хлорацетата) трис(2-метоксифенил)сурьмы (2-MeOC6H4)3Sb[OC(O)CH2Cl]2 (1), бис(2-метоксибензоата) трис(2-метоксифенил)сурьмы (2-MeOC6H4)3Sb[OC(O)C6H4(OMe-2)]2 (2), бис(2,3-дифторбензоата) трис(2-метоксифенил)сурьмы [(2-MeOC6H4]3Sb[OС(O)C6H3F2-2,3]2 (3) и сольвата бис(пентафторбензоата) трис(2-метоксифенил)сурьмы с бензолом [(2-MeOC6H4]3Sb[OС(O)C6F5]2 ∙ ½ PhH (4). Соединения 1-4, выделенные после перекристаллизации из смеси бензол-октан в виде монокристаллов, охарактеризованы методами ИК-спектроскопии и рентгеноструктурного анализа (РСА). В ИК-спектрах присутствуют полосы, характеризующие колебания карбонильных груп (1697, 1624, 1655, 1668 см-1), фрагмента SbC3 (440-447 см-1), связей Sb-O (575-536 см-1) соответственно. По данным РСА, кристаллы 1 и 4 принадлежат триклинной сингонии, группа симметрии Р-1; кристаллы 2 и 3 - моноклинной сингонии, группа симметрии P21/n. Факторы недостоверности уточнения структурных данных соствляют R1 = 0,0502 (1), R1 = 0,0437 (2), R1 = 0,0409 (3), R1 = 0,0333 (4). В тригонально-бипирамидальных молекулах с электроотрицательными лигандами в аксиальных положениях расстояния Sb-C составляют для 1 2,0966(17)-2,1194(18) Å, для 2 2,104(2)-2,126(2) Å, для 3 2,0889(19)-2,1134(19) Å и для 4 2,109(2)-2,123(2) Å; валентные углы OSbO принимают значения 175,15(5)° (1), 171,42(6)° (2), 176,97(6)° (3) и 164,47(6)° (4). Расстояния Sb-О в 1 [2,1088(15) и 2,1269(15) Å] сопоставимы с наблюдаемыми в 2 [2,1137(17) и 2,1232(18) Å], в 3 [2,0880(14) и 2,1063(14) Å] и несколько отличными для 4 [2,1035(17) и 2,1460(17) Å]. Сольватные молекулы бензола в 4 связывают собой соседние молекулы дикарбоксилатов [расстояния С∙∙∙H и Сl∙∙∙H равны 2,84 Å и 3,06 Å, что меньше суммы ковалентных радиусов атомов-партнеров. Атом сурьмы координирует карбонильные атомы кислорода со стороны малых экваториальных углов (115,31(9)° и 119,59(9)°), при этом внутримолекулярные контакты Sb∙∙∙O=C составляют 3,374(3) и 3,296(3) Å, что больше внутримолекулярных контактов Sb∙∙∙OMe (3,079-3,172 Å). Отметим, что подобное различие внутримолекулярных контактов Sb∙∙∙O и Sb∙∙∙OMe наблюдается и в первых трех молекулах комплексов [3,296(3), 3,374(3) Å и 3,102-3,167 Å для 1, 3,010(3), 3,164(3) Å и 3,058-3,202 Å для 2 и 3,190(3), 3,233(3) Å и 3,056-3,120 Å для 3]. Внутримолекулярные контакты Sb∙∙∙O=С между центральным атомом металла и карбонильным атомом кислорода наибольшие в 1 и 4, что можно объяснить присутствием электроакцепторных карбоксилатных лигандов. Полные таблицы координат атомов, длин связей и валентных углов для структур депонированы в Кембриджском банке структурных данных (№ 2416266 (1), № 2415652 (2), № 2415732 (3), № 2415648 (4), deposit@ccdc.cam.ac.uk; http://www.ccdc. cam.ac.uk).

Бесплатно

Оптимальный состав пастовых композитных электродов на основе стеклоуглеродной матрицы и оксидов железа

Оптимальный состав пастовых композитных электродов на основе стеклоуглеродной матрицы и оксидов железа

Толстогузов Д.С., Штин С.В., Смолякова К.Р., Жанахова А.Н., Матвеев К.В., Хасанова Г.А., Дубинина Е.И., Некорыснова Н.С., Чернуха А.С., Бежин В.К., Паладий М.А., Тарасов А.М., Галимов Д.М., Жеребцов Д.А.

Статья научная

В статье рассмотрено влияние соотношения порошок - масло в составе пастовых электродов из композитов на основе стеклоуглерода на их поведение в растворе (0,1 M KCl, 0,005 M K3[Fe(CN)6], 0,005 M K4[Fe(CN)6). Полученные композитные наноматериалы исследовались методами рентгенофазового анализа, просвечивающей и сканирующей электронной микроскопии, рентгеноспектрального анализа. Рентгенофазовый анализ показал, что образец содержит графит, магнетит Fe3O4 и цементит Fe3C. Результаты сканирующей электронной микроскопии показали, что частицы кристаллических фаз образуют агломераты размером от 0,1 до 3 мкм. Углеродные композиты измельчали и просеивали через сито 0,05 мм, после чего из полученного порошка готовили пасту для электрода с соотношением композит : вакуумное масло (мг : мг): 80 : 5, 80 : 10, 80 : 15, 80 : 20, 80 : 25, 80 : 30. Затем перемешивали до однородной массы и набивали в трубчатый электрод диаметром 3 мм. На основе сравнения спектров импеданса и вольтамперограмм показано, что оптимальным для работоспособности электродов соотношением композит:масло является 80:10 (масс). Обнаружен существенный дрейф свойств свежеприготовленных паст, который исключается их выдержкой перед использованием в течение суток. Показано решающее влияние наличия свежей поверхности перед каждым измерением.

Бесплатно

Оптические свойства триэтиламиниевой соли трифторуксусной кислоты

Оптические свойства триэтиламиниевой соли трифторуксусной кислоты

Семенов В.В., Золотарева Н.В., Лопатин М.А.

Статья научная

Триэтиламиний трифторацетат (CH3CH2)3NH+ -O(O)C-CF3, полученный взаимодействием трифторуксусной кислоты с триэтиламином, представляет собой бесцветную ионную жидкость, переходящие в паровую фазу при нагревании до 200-220 °С. Соединение охарактеризовано методами элементного анализа, инфракрасной спектроскопии, ядерного магнитного резонанса на ядрах 1Н и 13С, масс-спектроскопии, термогравиметрии, дифференциальной сканирующей калориметрии, рефрактометрии, электронной спектроскопии поглощения и испускания. В УФ-спектре наблюдается слабая полоса поглощения в диапазоне 260-340 нм. При возбуждении в область 320 нм соединение показывает две полосы фотолюминесценции 375 и 425 нм. Ионная жидкость хорошо растворяет координационные соединения лантаноидов: фенантролин теноилтрифторметилацетонат эрбия(III) Er(tta)3·phen, тригидрат трис(3-трифторацетамидобензоилтрифторацетонат) европия(III) и ацетилацетонат гольмия(III) Но(асас)3. Представлены спектры поглощения β-дикетонатов эрбия(III), европия(III), гольмия(III) и спектры испускания β-дикетонатов эрбия(III) и европия(III).

Бесплатно

Органические соединения Германия. Синтез, строение, возможности Практического применения

Органические соединения Германия. Синтез, строение, возможности Практического применения

Шарутин В.В., Рыбакова А.В.

Статья обзорная

На основе анализа литературы, опубликованной преимущественно с 2020 по 2022 гг., систематизированы и описаны методы получения, некоторые реакции, особенности строения органических соединений германия и примеры их возможного использования. Рассмотрены некоторые реакции органических соединений германия и приведены сведения о возможности их практического использования.

Бесплатно

Органические соединения Свинца. Синтез и строение

Органические соединения Свинца. Синтез и строение

Шарутин В.В., Тарасова Н.М.

Статья обзорная

На основе анализа литературы, опубликованной преимущественно с 2020 по 2022 гг., систематизированы и описаны методы получения, особенности строения и некоторые реакции органических соединений свинца. Кроме того, рассмотрены примеры их возможного практического применения.

Бесплатно

Органические соединения олова. Синтез, строение, возможности практического применения

Органические соединения олова. Синтез, строение, возможности практического применения

Шарутин В.В.

Статья обзорная

На основе анализа литературы, опубликованной преимущественно с 2020 по 2022 г.г., систематизированы и описаны методы получения, некоторые реакции, особенности строения органических соединений олова и примеры их возможного использования. Рассмотрены некоторые реакции органических соединений олова и приведены сведения о возможности их практического использования

Бесплатно

Органические соединения платины, содержащие две и более связи платина - углерод. Синтез, строение, возможности практического применения

Органические соединения платины, содержащие две и более связи платина - углерод. Синтез, строение, возможности практического применения

Шарутин В.В., Рыбакова А.В.

Статья научная

На основе анализа литературы, опубликованной преимущественно с 2020 по 2023 г., систематизированы и описаны методы получения, некоторые реакции, особенности строения органических соединений платины, содержащих две и более связи платина-углерод, и примеры их возможного использования. При обсуждении методов синтеза основное внимание уделено наиболее эффективным подходам их получения. Рассмотрены реакции образования органических соединений платины и приведены сведения об их биологической и каталитической активности.

Бесплатно

Органические соединения платины, содержащие одну связь платина - углерод. Синтез, строение, возможности практического применения

Органические соединения платины, содержащие одну связь платина - углерод. Синтез, строение, возможности практического применения

Шарутин В.В., Зыкова А.Р.

Статья научная

На основе анализа литературы, опубликованной преимущественно с 2020 по 2023 г., систематизированы и описаны методы синтеза и особенности строения органических соединений платины, содержащих одну связь платина - углерод. При обсуждении методов синтеза основное внимание уделено наиболее эффективным подходам к их получению. Представлены химические свойства этих соединений платины, схемы получения и некоторые механизмы реакций. Приведены сведения о биологической активности, каталитических и фотолюминесцентных свойствах.

Бесплатно

Органические соединения сурьмы. Синтез, строение, возможности практического применения

Органические соединения сурьмы. Синтез, строение, возможности практического применения

Шарутин В.В.

Статья обзорная

На основе анализа литературы, опубликованной преимущественно с 2020 по 2023 г., систематизированы и описаны методы получения, некоторые реакции, особенности строения органических соединений сурьмы и примеры их возможного использования.

Бесплатно

Осаждение гидроксидов металлов с использованием слабых органических оснований

Осаждение гидроксидов металлов с использованием слабых органических оснований

Ваганова Юлия Вячеславовна, Миролюбов Виталий Романович, Катышев Сергей Филиппович, Янов Александр Юрьевич, Мосунова Татьяна Владимировна

Статья научная

Исследован процесс химического осаждения гидроксидов металлов с использованием органических веществ - бренстедовских оснований. Разработана методика расчета ионного состава раствора, изучено влияние органических реагентов на процесс гидролиза катионов металлов методами рентгенофазового и термогравиметрического анализа.

Бесплатно

Журнал