Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry
Статьи журнала - Вестник Южно-Уральского государственного университета. Серия: Химия
Все статьи: 614

Необычные реакции дигалогенодицианоауратов калия с галогенидами органилтрифенилфосфония
Статья научная
Выдерживанием в воде в течение нескольких суток осадков, полученных по реакциям дихлоро- и дибромодицианоаурата калия с хлоридами тетрафенилфосфония, цианометил- и метоксиметилтрифенилфосфония, с последующей перекристаллизацией из ацетонитрила в качестве минорных продуктов были выделены соответствующие дицианоаураты тетраорганилфосфония [Ph4P][Au(CN)2] (1), [Ph3PCH2CN][Au(CN)2] (2) и [Ph3PCH2OMe][Au(CN)2] (3). В результате взаимодействия в горячем этаноле дихлоро-, дибромо- и дииододицианоаурата калия с хлоридом гидроксиметилтрифенилфосфония были синтезированы соответствующие галогениды (трифенилфосфин)золота(I) (Ph3P)AuHal (Hal = Cl (4), Br (5), I (6)). Установлено, что проведение указанных реакций в воде с последующей перекристаллизацией из этанола или ацетонитрила приводит к кристаллическому продукту ионно-обменного взаимодействия только в случае дииододицианоаурата калия (был получен [Ph3PCH2OH][Au(CN)2I2] (7)). Соединения 1-7 были идентифицированы методами элементного анализа, ИК-спектроскопии и рентгеноструктурного анализа (РСА). По данным РСА, комплексы 1-3 и 7 состоят из тетраэдрических органилтрифенилфосфониевых катионов и дицианоауратных (1-3) или дииододицианоауратных (7) анионов с линейной или плоско-квадратной геометрией атомов золота соответственно. Кристаллическая организация соединений 2, 3 и 7 обусловлена межионными контактами С-H∙∙∙N≡C (2, 3, 7), O-H∙∙∙N≡C (7) и C-HPh∙∙∙π(C≡N) (2). В случае комплекса 1 значимых межионных контактов в кристалле не наблюдается. Полные таблицы координат атомов, длин связей и валентных углов для комплексов 1-3 и 7 депонированы в Кембриджском банке структурных данных (№ 1978554 (1), № 1965532 (2), № 2060230 (3), № 2060283 (7); deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).
Бесплатно

Нитрат 4,4’-дипиридил меди(II) - 2D металл-органический каркас
Статья научная
Описана кристаллическая структура металл-органического каркаса - нитрата 4,4’-дипиридил меди(II) с молекулой ДМСО в координационной сфере меди, детали строения установлены методом РСА. Кристаллографические данные: брутто-формула C55H93Cu2N12O23S7, М 1641,91; моноклинная сингония, пространственная группа P 1 21/n 1; параметры ячейки: a = 15,490(3), b = 14,760(3), c = 15,980(3); a = 90, β = 90,10(3), g = 90 град; V = 3653,5(13) Å3, Z = 2, ρрасч = 1,493 г/см3. Бидентатным лигандом в исследуемом МОК является 4,4’-бипиридил; медь образует координационный полиэдр - октаэдр, в четырех экваториальных положениях которого находятся атомы азота бипиридиновых фрагментов, а в двух аксиальных положениях - атомы кислорода в нитрат-иона и диметилсульфоксида. Длины связей Cu-N в экваториальном положении лежат в диапазоне 2,014-2,031 Å, а длины связи Cu-O составляют 2,297 Å и 2,515 Å. Занятость экваториальных положений 4,4’-дипиридилом приводит к образованию сетчатой слоистой 2D-структуры. Отдельные слои в полученном нитрате 4,4’-дипиридил меди(II) не связаны между собой и сдвинуты относительно друг друга. Ароматические кольца 4,4’-дипиридила повернуты на угол 5,77(2) град. относительно друг друга.
Бесплатно

Нитрильные соединения платины. Синтез, строение, возможности практического применения
Статья научная
На основе анализа литературы, опубликованной преимущественно с 2020 по 2023 г., систематизированы и описаны методы получения, некоторые реакции, особенности строения нитрильных соединений платины и примеры их возможного использования. При обсуждении методов синтеза основное внимание уделено наиболее эффективным подходам к их получению. Рассмотрены реакции образования нитрильных соединений платины и приведены сведения о их биологической и каталитической активности.
Бесплатно

Новые Биядерные арильные соединения сурьмы
Статья научная
Методом рентгеноструктурного анализа (РСА) определено строение пяти биядерных арильных соединений сурьмы (Ar3SbX)2O [Ar = 3-FC6H4, X = OC(O)CF2Br (1), Ar = 4-FC6H4, X = OC6H2Br3-2,4,6 ∙ 0,5C8H18 (2), Ar = 4-MeC6H4, X = OC(O)CH2Cl (3), Ar = 4-MeC6H4, X = OC(O)CH2Br (4), Ar = Ph, X = OC(O)C6HF4 (5)], РСА которых проводили на автоматическом четырехкружном дифрактометре D8 Quest Bruker (Мо Kα-излучение, λ = 0,71073 Å, графитовый монохроматор) при 293 К. Кристаллы (1) C40H24O5F10Br2Sb2, M 1177,91; сингония моноклинная, группа симметрии C2/c; параметры ячейки: a = 24,808(9), b = 10,837(3), c = 32,215(10) Å; β = 96,711(19)°, V = 8601(5) Å3; Z = 8; rвыч = 1,819 г/см3; 2q 5,74-68,08 град.; всего отражений 95957; независимых отражений 14384; число уточняемых параметров 532; Rint = 0,0898; GOOF 1,771; R1 = 0,1705, wR2 = 0,4519; остаточная электронная плотность (max/min); 2,34/-4,78 e/Å3], (2) C52H37O3F6Br6Sb2 M 1546,78; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 12,325(5), b = 13,749(6), c = 17,774(8) Å; a = 83,259(16), β = 80,26(3), g = 65,894(15) град., V = 2706(2) Å3, Z = 2; rвыч = 1,898 г/см3; 2q 6,06-59,14 град.; всего отражений 144892; независимых отражений 15098; число уточняемых параметров 623; Rint = 0,0646; GOOF 1,010; R1 = 0,0379, wR2 = 0,0791; остаточная электронная плотность (max/min); 0,92/-1,45 e/Å3], (3) C69H69O7,5Cl3Sb3, M 1489,84; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 10,474(7), b = 11,179(6), c = 29,736(14) Å; a = 88,899(18)°, β = 82,542(19)°, g = 76,22(3)°; V = 3353(3) Å3, Z = 2; rвыч = 1,476 г/см3; 2q 5,56-51,62 град.; всего отражений 65830; независимых отражений 12738; число уточняемых параметров 754; Rint = 0,0510; GOOF 1,037; R1 = 0,0383, wR2 = 0,0803; остаточная электронная плотность (max/min): 0,83/-1,13 e/Å3], (4) C69H69O7,5Br3Sb3, M 1623,22; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 10,585(7), b = 11,255(7), c = 29,712(18) Å; a = 88,41(3)°, β = 82,43(3)°, g = 75,01(3)°; V = 3389(4) Å3, Z = 2; rвыч = 1,591 г/см3; 2q 5,58-33,64 град.; всего отражений 14830; независимых отражений 3789; число уточняемых параметров 754; Rint = 0,0327; GOOF 1,049; R1 = 0,0354, wR2 = 0,0852; остаточная электронная плотность (max/min): 0,76/-0,93 e/Å3], (5) C450H288F72O45Sb18, M 9974,83; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 12,045(12), b = 24,31(3), c = 36,66(4) Å; a = 101,75(5)°, β = 98,50(3)°, g = 98,52(5)°; V = 10216(19) Å3, Z = 1; rвыч = 1,6213 г/см3; 2q 5,6-40,58 град.; всего отражений 99411; независимых отражений 19647; число уточняемых параметров 2519; Rint = 0,0516; GOOF 1,099; R1 = 0,0576, wR2 = 0,1076; остаточная электронная плотность (max/min): 1,78/-1,26 e/Å3].
Бесплатно

Новые аренсульфонаты тетраорганилфосфония
Статья научная
Реакцией эквимолярных количеств бромидов тетраорганилфосфония с аренсульфоновыми кислотами в воде с выходом до 89 % получены ионные аренсульфонаты тетраорганилфосфония [Bu4P][OSO2C6H3(OH-4)(COOH-3)] (1), [Ph3PEt][OSO2С10H7-1] (2), [Ph3PCH2C≡CH][OSO2C6H3(NO2)2-2,4] (3), [Ph3PCH2СN][OSO2Naft-1)] ∙ H2O (4), [Ph3PCH2С6H4(OH-2)] [OSO2C6H3Сl2-2,5] ∙ H2O (5), [Ph3PCH2Ph][OSO2C6H3(OH-4)(COOH-3)] (6), [Ph3PC3H5-cyclo] [OSO2C6H3(OH-4)(COOH-3)] (7), [Ph3PCH=СHPPh3][OSO2C6H3Сl2-2,5]2 ∙ 2H2O (8), [Ph3PCH=СHPPh3][OSO2C6H4(COOH)-2]2 ∙ 6H2O (9). Особенности строения комплексов 1-9 установлены методом РСА. Кристаллы 1 [C23H34O6PS, M 476,59; сингония моноклинная, группа симметрии P21/c ; параметры ячейки: a = 10,15(2), b = 16,15(6), c = 16,65(4) Å; β = 92,62(4), V = 2703(13) Å3, Z = 4; rвыч = 1,171 г/см3], 2 [C30H27O3PS, M 498,55; сингония ромбическая, группа симметрии P bca; параметры ячейки: a = 18,344(10), b = 12,947(8), c = 21,051(12) Å; a = β = g = 90,00 град., V = 5000(5) Å3, Z = 8; rвыч = 1,325 г/см3], 3 [C27H21N2O7PS, M 548,49; сингония ромбическая, группа симметрии P ca21; параметры ячейки: a = 13,25(2), b = 12,098(17), c = 16,65(3) Å; a = β = g = 90,00 град., V = 2669(7) Å3, Z = 4; rвыч = 1,365 г/см3], 4 [C35H31O4PS, M 578,63; сингония моноклинная, группа симметрии P21/c ; параметры ячейки: a = 11,357(5), b = 21,717(10), c = 13,135(6) Å; β = 115,479(18) град., V = 2925(2) Å3, Z = 4; rвыч = 1,314 г/см3], 5 [C31H27Cl2O5PS, M 613,46; сингония ромбическая, группа симметрии Pbca ; параметры ячейки: a = 14,945(15), b = 15,291(19), c = 25,06(3) Å; V = 5728(11) Å3, Z = 8; rвыч = 1,423 г/см3] состоят из тетраэдрических тетраорганилфосфониевых катионов и аренсульфонатных анионов с тетраэдрическим атомом серы. В кристаллах комплексов 6 и 7 [C32H27O6PS, M 570.57; rhombic syngony, symmetry group P 212121; cell parameters: a = 11,174(18), b = 20,98(3), c = 23,73(4) Å; a = β = g = 90,00 deg., V = 5565(16) Å3, Z = 8; rcalc = 1.362 g/cm3] and 7 [C56H52O13P2S2, M 1059,04; rhombic syngony, symmetry group P bca; cell parameters: a = 13,704(8), b = 17,611(8), c = 41,64(4) Å; a = β = g = 90,00 deg., V = 10050(16) Å3, Z = 8; r calc = 1,400 g/cm3] присутствуют аналогичные пары тетраорганилфосфониевых катионов и аренсульфонатных анионов. Комплекс 8 [C50H42Cl4O8P2S2, M 1038,70; triclinic syngony, symmetry group -C 1; cell parameters: a = 22,911(7), b = 10,797(3), c = 20,488(6) Å; a = 90,00, β = 106,884(11), g = 90,00 deg., V = 4850(2) Å3, Z = 8; rcalc = 1,423 g/cm3] состоит из двухзарядных фосфониевых катионов и двух типов кристаллографически независимых аренсульфонатных анионов, в отличие от 9 [C26H27O8PS, M 530,51; triclinic syngony, symmetry group P- 1; cell parameters: a = 9,09(7), b = 10,797(3), c = 20,488(6) Å; a = 90,00, β = 106,884(11), g = 90,00 deg., V = 4850(2) Å3, Z = 8; rcalc = 1,423 g/cm3], в котором содержатся аренсульфонатные анионы одного типа. Соединения 4, 5, 7 и 9 являются гидратами, молекулы воды в которых участвуют в структурировании кристалла (расстояния Н∙∙∙О изменяются в интервале 2,08-2,72 Å). Длины связей P-C варьируют в интервале 1,453(4)-2,316(4) Å. Валентные углы СРС принимают значения 91,0(3)°-128,38(19)°. Расстояния S-О изменяются в пределах 1,314(2)-1,599(2) Å. Полные таблицы координат атомов, длин связей и валентных углов для структур депонированы в Кембриджском банке структурных данных (№ 2172943 (1), № 2183774 (2), № 2292652 (3), № 2177234 (4), № 2177802 (5), № 2219877 (6), № 2172945 (7), № 2175821 (8), № 2175822 (9), deposit@ccdc.cam.ac.uk; http://www.ccdc. cam.ac.uk).
Бесплатно
![Новые ионные комплексы платины(IV): [Ph3PCH3][PtBr5(dmso)] и [C(CH2OH)3NH3][K][Pt(SCN)6] Новые ионные комплексы платины(IV): [Ph3PCH3][PtBr5(dmso)] и [C(CH2OH)3NH3][K][Pt(SCN)6]](/file/thumb/147236626/novye-ionnye-kompleksy-platiny-ivph3pch3-ptbr5-dmso-i-c-ch2oh-3nh3-k-pt-scn.png)
Новые ионные комплексы платины(IV): [Ph3PCH3][PtBr5(dmso)] и [C(CH2OH)3NH3][K][Pt(SCN)6]
Статья научная
Первые сообщения о диметилсульфоксидных комплексах появились в начале 60-х годов прошлого века. Большой вклад в развитие этой темы внесла группа ученых под руководством Ю.Н. Кукушкина, исследовавших свойства комплексов платиновых металлов(II). Ионные диметилсульфоксидные комплексы платины(IV) в настоящее время изучены в меньшей степени. (Диметилсульфоксидо)пентабромоплатинат метилтрифенилфосфония [Ph3PCH3][PtBr5(dmso)] (1) получен путем растворения гексабромоплатината метилтрифенилфосфония в диметилсульфоксиде c выходом 85 %. Комплексы платины с гексакис (тиоцианато-S)платинатными анионами практически не изучены. По сведениям из Кембриджской базы структурных данных CSD, синтезировано и структурно охарактеризовано только пять гексакис (тиоцианато- S )платинатных комплексов, большинство из которых получены в период с 1978 по 1999 год. Гексакис (тиоцианато- S )платинатный комплекс [C(CH2OH)3NH3][K][Pt(SCN)6] (2) с двумя различными катионами (калия и органиламмония) синтезирован из хлорида трис (2-гидроксиметил)метиламмония и гексатиоцианатоплатината калия в водном растворе ацетона с выходом 58 %. Строение комплексов доказано с помощью ИК-, 1H-, 13C ЯМР-спектроскопии и ренгенофлуоресцентного анализа. ИК-спектры соединений 1 и 2 записывали на ИК-спектрометре Shimadzu IRAffinity-1S в таблетках KBr в области 4000-400 см-1. Спектры ЯМР 1H и 13C регистрировали на спектрометре Bruker AVANCE 500 (500 МГц). Химические сдвиги измерены от внутреннего стандарта ТМС для ядер 1H, от сигнала растворителя для ядер 13C (d C 39,5 м. д.). Элементный состав полученных образцов был исследован на сканирующем электронном микроскопе Jeol JSM 7001F, оборудованном энергодисперсионным рентгенофлуоресцентным спектрометром Oxford INCA X-max 80.
Бесплатно

Новые комплексы трис(2-метокси-5-бромфенил)стибина с нитратом серебра
Статья научная
При смешивании растворов трис(2-метокси-5-бромфенил)стибина и нитрата серебра в смеси метанол:ацетонитрил (1:1 объемн.) получен комплекс нитрато-О,О’-(ацетонитрил)[трис(2-метокси-5-бромфенил)стибин]серебра состава [(C6H3ОMe-2- Br-5)3SbAg(μ2-NO3)(Ме3CN)]2·2[(C6H3ОMe-2-Br-5)3SbAgNO3(Ме3CN)] (1). При введении в реакцию раствора нитрата серебра в смеси метанол : ацетонитрил и раствора трис(2-метокси-5-бромфенил)стибина в диоксане образуется небольшое количество темных кристаллов ионного комплекса [(2-MeО-5-Br-C6H3)3SbAg(H2O)Sb(C6H3Br-5-OMe-2)3]+[(2-MeО-5-Br-C6H3)3SbAg(m-NO3)3AgSb(C6H3Br-5-OMe-2)3]-×3C4H8O2 (2). Комплексы 1 и 2 охарактеризованы методом ИК-спектроскопии, методом рентгеноструктурного анализа установлено их строение. В ИК-спектрах комплексов 1 и 2 присутствуют полосы, характеризующие колебания связей Sb-O, Sb-C, С≡N- и NO3-групп. Рентгеноструктурный анализ комплексов проводили на автоматическом четырехкружном дифрактометре D8 Quest Bruker (МоКα-излучение, λ = 0,71073 Å, графитовый монохроматор) при 293 К. Кристаллографические характеристики: 1 - триклинная сингония, пространственная группа P-1, a = 9,32(3), b = 17,50(7), c = 17,97(5) Å, a = 97,56(14), β = 92,90(19), g = 99,45(19) град., V = 2859(16) Å3, Z = 2, rвыч = 2,069 г/см3; 2 - моноклинная сингония, пространственная группа С2/с, a = 17,417(14), b = 21,041(15), c = 32,01(2) Å, a = 90, β = 97,79(3), g = 90 град., V = 11624(15) Å3, Z = 4, rвыч = 2,006 г/см3. В мономерной и димерной молекулах кристалла 1 нитратные лиганды являются хелатирующими и мостиковыми соответственно. В катионе комплекса 2 атом серебра связан с двумя стибиновыми лигандами, третье координационное место занимает молекула воды; в димерном анионе в окружении каждого атома серебра имеется один стибиновый лиганд и три мостиковых нитратных группы.
Бесплатно

Новые органосульфонаты алкилтрифенилфосфония
Статья научная
Реакцией эквимолярных количеств бромидов алкилтрифенилфосфония с органосульфоновыми кислотами в воде с выходом до 90 % получены органосульфонаты алкилтрифенилфосфония [Ph3PC6H11-cyclo][OSO2CF3] (1), [Ph3PCH2CN][OSO2CF3] (2), [Ph3PC6H11-cyclo][OSO2C6H3(NO2)2-2,4] (3), [Ph3PCH2С6H4(OH-2)][OSO2C6H3Me2-2,5] (4), [Ph3P(CH2)4Br][OSO2C6H3Me2-2,5] (5). Строение комплексов 1-5 установлено элементным анализом и методом ИК-спектроскопии.
Бесплатно

Статья научная
Методом компенсационной сополимеризации осуществлен синтез композиционно однородных двойных и тройных сополимеров винилбутилового эфира, стирола и алкил(мет)акрилатов (бутилакрилата, бутилметакрилата и 2-этилгексилакрилата) с соизмеримым соотношением всех компонентов. Новые сополимеры проявляют низкую склонность к механической деструкции в растворе диоктилсебацината - синтетической основе смазочных масел, что косвенно подтверждает их однородность по составу и представляет перспективу их применения в качестве импортозамещающих загустителей масел.
Бесплатно
![Новые трициклические окса(тиа)зино[3,2-а]хинолиниевые системы Новые трициклические окса(тиа)зино[3,2-а]хинолиниевые системы](/file/thumb/147160182/novye-triciklicheskie-oksa-tia-zino-32-a-hinolinievye-sistemy.png)
Новые трициклические окса(тиа)зино[3,2-а]хинолиниевые системы
Статья научная
Взаимодействием 4-метил-1-(3-хлор-2-пропенил)-2-хинолона и 2-(3-хлор-2-пропенилтио)хинолинов с галогенами получены новые 2-галоген-З-хлор-2,3-дигидро-1H-оксазино[3,2-а]хинолиний и 2-галоген-1-хлор-2,3-дигидро-1H-тиазино[3,2-а]хинолиний галогениды.
Бесплатно

Новый способ синтеза 1-нафталинсульфоната тетрафенилвисмута
Статья научная
Взаимодействием пентафенилвисмута с бис (1 - нафталинсульфонатом) трифенилсурьмы в бензоле синтезирован с выходом 38 % 1 - нафталинсульфонат тетрафенилвисмута, который после перекристаллизации из воды идентифицирован как гидрат Ph4BiOSO2C10H7 × H2O (1). Cтроение 1 (бесцветные кристаллы c т. пл. 178 °С) определено методом рентгеноструктурного анализа (РСА) на автоматическом четырехкружном дифрактометре D8 Quest Bruker (Мо Кα -излучение, λ = 0,71073 Å, графитовый монохроматор) при 293 К. Размер кристалла 0,27 × 0,25 × 0,09 мм, P- 1, a = 9,542(5), b = 12,595(5), c = 13,998(5) Å, a = 74,228(15), β = 80,06(2), g = 68,758(15) град., V = 1503,7(12) Å3, Z = 2. Область сбора данных по 2q 5,72-77,8°, интервалы индексов отражений -16 ≤ h ≤ 16, -22 ≤ k ≤ 22, -24 ≤ l ≤ 24; измерено всего 102981 отражений, 17181 независимых отражений, переменных уточнения 364, μ = 5,968 мм-1; GOOF 0,987, окончательные значения факторов расходимости R 1 = 0,0534 и wR 2 = 0,0941 (по рефлексам F 2> 2s( F 2), R 1 = 0,1619 и wR 2 = 0,1163 (по всем рефлексам), остаточная электронная плотность 2,65/-1,05 e/Å3. Атом висмута в молекуле 1 имеет сильно искаженную тригонально-бипирамидальную координацию с аренсульфонатным заместителем в аксиальном положении. Валентные углы СBiС составляют 100,52(8)-119,28(7)°, расстояния Bi-C и Bi-О равны 2,179(2)-2,212(2) и 2,915(1) Å соответственно. Две молекулы 1 объединены в димеры посредством водородных связей между атомами водорода двух молекул воды и атомами кислорода двух нафталинсульфонатных групп.
Бесплатно

Статья научная
Взаимодействием эквимолярных количеств 2,4,6-трибромфенокситетрафенилвисмута (синтезированного из пентафенилвисмута и 2,4,6-трибромфенола) с камфора-10-сульфоновой, 1-нафталинсульфоновой и 2-сульфобензойной кислотами в смеси ацетон/вода синтезированы аренсульфонаты тетрафенилвисмутония Ph4BiOSO2C10H15O∙H2O (1), Ph4BiOSO2(C10H7-1)∙H2O (2), [Ph4Bi]+[OSO2C6H4(COOH-2)]- (3), два из которых являлись гидратами аренсульфонатов тетрафенилвисмута. Температуры плавления и ИК-спектры полученных соединений совпадали с аналогичными характеристиками комплексов, полученных из пента_фенилвисмута и аренсульфоновых кислот.
Бесплатно

Статья научная
Взаимодействием эквимолярных количеств дихлорида и динитрата трифенилвисмута с пентафенилвисмутом в бензоле синтезированы хлорид и нитрат тетрафенилвисмутония, которые в реакции с мезитиленсульфоновой кислотой образуют мезитиленсульфонат тетрафенилвисмутония с выходом до 73 %.
Бесплатно

О взаимодействии 3-гидрокси-6-фторпиразин-2-карбоксамида (фавипиравира) с аринами
Статья научная
3-Гидрокси-6-фторпиразин-2-карбоксамид (фавипиравир) был одним из препаратов, рекомендованных для терапии COVID-19. Как и для других лекарственных препаратов, для фавипиравира актуальным является вопрос утилизации лекарственных субстанций с истекшим сроком годности. В рамках данной статьи нами исследован способ возможной химической утилизации фавипиравира путем его взаимодействия с аринами (1,2-дегидробензолами) с образованием практически ценных изохинолинов.
Бесплатно

Статья научная
Изучено взаимодействие азина циклогексанона с бромидом фосфора(III) без растворителя. Показано, что основным продуктом реакции является циклогексан-аннелированный 1,4-дибром-3а,6а-диаза-1,4-дифосфапентален (2, DDP-Br2, 57 %). Побочными продуктами синтеза оказались трис (4-бром-3а,6а-диаза-1,4-дифосфапентален-1-ил)амин (3, 8 %) и бромид аммония. Молекулярная структура соединения 3 изучена методом РСА. Кристаллическая ячейка содержит две пары энантиомеров и восемь сольватных молекул ТГФ, четыре из которых разупорядочены по двум положениям. Центральный атом азота N(7) в соединении 3 образует три связи с атомами фосфора DDP-фрагментов P(1), P(3), P(5), лежащими в одной плоскости. Располагающиеся ближе к центру молекулы атомы азота гетеропенталеновых фрагментов (N(2), N(4), N(6)) имеют плоскую конфигурацию (с суммой валентных углов 359,62; 359,50; 359,38° соответственно). В свою очередь, для атомов N(1), N(3), N(5) наблюдается большее отклонение от плоского строения (сумма валентных углов 353,85; 353,71; 353,96° соответственно). Периферийные связи фосфор-азот (P(2)-N(1) 1,689(2), P(4)-N(3) 1,691(3), P(6)-N(5) 1,690(2) Å) заметно короче соответствующих связей в соседних пятичленных циклах (P(1)-N(2) 1,744(2), P(3)-N(4) 1,738(3), P(5)-N(6) 1,733(2) Å). Различие в длинах связей фосфор-бром P(2)-Br(1) 2,4805(8), P(4)-Br(2) 2,4675(8), и P(6)-Br(3) 2,4836(8) Å может быть вызвано наличием различных коротких контактов Br···H между соседними молекулами соединения 3, а также между соединением 3 и сольватными молекулами ТГФ. Предполагается, что соединение 3 образуется в ходе побочной реакции дибромида DDP (2) с бромидом аммония, который появился в реакционной смеси в результате частичного разложения азина циклогексанона при длительном нагревании его с бромидом фосфора.
Бесплатно

Статья научная
Гидродесульфация скипидара на блочном катализаторе с нанесенным на него Ni и Pd позволяет снизить содержание общей серы в скипидаре до значений ниже 50 ppm. Хорошо известно, что двойные связи, в том числе и кратная связь α-пинена, также могут подвергаться гидрированию, хотя в меньшей степени, чем связь С-S. С целью контроля содержания α-пинена в процессе гидродесульфации скипидара параллельно с контролем содержания серы в сульфатном скипидаре осуществляли анализ концентрации α-пинена до и после процесса на катализаторе. После гидродесульфации скипадара Братского ЦБК на катализаторе 0,4 % Pd/6,0 % γ-Al2O3 при 75 °С, 1,5 МПа потеря α-пинена, вероятнее всего, за счет гидрирования, составляет 5 %. Кроме того, при изменении содержания Pd на катализаторе от 0,2 до 1 % очевидна тенденция уменьшения концентрации α-пинена, что вполне закономерно: увеличение концентрации металла способствует увеличению скорости реакции, в том числе и реакции гидрирования α-пинена. Показано, что при гидродесульфации скипидара Усть-Илимского ЛПК при 1,5 МПа и 120 °С в течение 12 ч в присутствии 10 % Ni на ВПЯК и 7 % ZnO и последующем проведении процесса при 25 °С в течение 5 ч в присутствии 0,4 % Pd и оксида цинка гидрирования α-пинена практически не происходит. Это важно, так как α-пинен является исходным соединением в составе скипидара для получения путем кислотно-каталитической гидратации высококачественных коммерчески востребованных продуктов - соснового масла марок МС-85, МС-95 и парфюмерного терпинеола. Небольшие потери его имеют место при уменьшении концентрации Pd до 0,2 % и увеличении температуры процесса, однако в этом случае содержание серы в конечном продукте значительно. Хороший результат по содержанию серы получен при увеличении содержания Pd до 1 %, при этом не требуется предварительное обессеривание на никелевом катализаторе. Однако в этом случае имеют место заметные потери (более 30 %) основного компонента скипидара - α-пинена. Результаты, представленные в работе, являются подтверждением селективности реакции каталитического гидрирования в мягких условиях по отношению к связи C-S в сравнении с кратной связью С=С: несмотря на то, что скипидар состоит преимущественно из α-пинена, а содержание серосодержащих соединений в пересчете на общую серу исчисляется в ppm, гидрируется преимущественно связь C-S. Хотя в более жестких условиях удалось получить продукт количественного гидрирования предварительно очищенного от серы скипидара α-пинена - цис -пинана.
Бесплатно

О создании и развитии химического факультета Южно-Уральского государственного университета
Другой
Химический факультет был создан в сентябре 2007 года на основании решения Учёного совета и приказа ректора Южно-Уральского государственного университета. Три из четырёх направлений подготовки выпускников, которые стал реализовывать новый факультет, существовали в университете и раньше. Подготовка по специальности «Охрана окружающей среды и рациональное использование природных ресурсов» (ставшей при переходе на двухуровневую систему «бакалавр - магистр» направлением «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии») была начата в 1988 г. на кафедре водоснабжения и водоотведения Инженерно-строительного факультета. На этой же кафедре, впоследствии переименованной в кафедру водного хозяйства и промышленной экологии, а затем в кафедру общей и инженерной экологии, с 2001 г. велась подготовка по специальности «Природопользование», ставшей затем направлением «Экология и природопользование». На кафедре общей химии Металлургического (впоследствии Физико-металлургического) факультета в 2001 году был открыт набор на специальность «Химическая технология», сохранившую название при переходе на двухуровневую систему. Новым было только направление подготовки «Химия», набор на которое стартовал с открытием Химического факультета.
Бесплатно

Статья научная
Обсуждаются вопросы, связанные с управлением скоростями химических реакций в органических полимерах и в живых системах. Общей как для растений, так и животных, но практически неизвестной кинетической закономерностью является наличие зависимостей их скоростей от характера молекулярных движений реагентов в реакционных средах. Реакции в них могут проходить либо в кинетическом режиме, либо в режиме с ограниченной подвижностью реагентов, переходы между которыми обусловлены изменением вязкости. Возможность управления химическими реакциями за счет этих переходов обусловлена тем, что скорости их в этих двух режимах могут отличаться на многие порядки: 101,5-108 раз и более. Наиболее типичен такой механизм управления скоростями химических реакций в случае полимерной химии - фронтальная фотополимеризации с предельно малой шириной фронта реакции (ФФП) в высоковязких средах. ФФП приводит к образованию бездефектного прозрачного изделия, когда обеспечивается выход квази-частиц свободного объема из тонкого слоя полимеризующейся композиции. Наиболее типичен такой механизм управления скоростями химических реакций в живых системах - синтез инсулина в островковой части поджелудочной железы. Превышение концентрации глюкозы в крови приводит к разжижению железы и ходу реакций в ней в кинетическом режиме с довольно большой скоростью. Падение же ее концентрации в крови приводит к отверждению железы и ходу реакции в режиме с ограниченной подвижностью реагентов с ничтожно малой скоростью. Вязкость в матриксе мембран может быть изменена в результате либо соотношения в ней липидов с предельными и ненасыщенными жирными кислотами (ЖК), либо температуры. Последнее исключено в случае теплокровных животных, но не исключено в системах, находящихся в тепловом равновесии с окружающей средой. В высших растениях все реакции проходят в кинетическом режиме и могут переходить в режим с ограниченной подвижностью реагентов только при понижении температуры во внешней среде. Этот переход приводит к остановке всех реакций в них, но есть исключение. Охлаждение до 5-6 °С приводит к понижению скоростей всех процессов в клетке, в том числе и активного транспорта ионов, но к «оживлению» десатураз в мембранах, вызывающих катализ реакции превращения липидов с предельными ЖК в ненасыщенные ЖК до тех пор, пока не произойдет возврат к кинетическому ходу этой реакции из-за увеличения в мембране липидов с ненасыщенными ЖК. Парадокс в том, что инициирование этой реакции обусловлено не разжижением матрикса мембран, а, наоборот, ее отверждением в случае понижения температуры до 5-6 °С. Теоретически показана возможность этого, если превращение липидов с предельными ЖК в ненасыщенные проходит в режиме с ограниченной подвижностью реагентов. «Оживлению» десатураз в мембранах подобен процесс сокращения мышц в саркоплазме: образование актин-миозинового комплекса вследствие увеличения вязкости в ней и перехода этого процесса в режим с ограниченной подвижностью реагентов. Отличие заключается лишь в том, что вязкость в матриксе мембран возрастает в результате уменьшения температуры во внешней среде, а в саркоплазме - в результате потока ионов кальция в нее из внешней среды. Ионы кальция приводят к образованию в ней трехмерной сетки, а следовательно, и к увеличению вязкости в саркоплазме. Сокращение мышц в саркоплазме в результате такого перехода может происходить самопроизвольно - без введения в нее какой-либо химической энергии от внешних источников. За исключением реакций, связанных с «оживлением» десатураз в мембранах и синтезом инсулина в островковой части поджелудочной железы, в регулировании их участвует нервная система. Исполнение предназначенных тканям функций осуществляется после прихода к ним нервных импульсов, допускающих в течение ограниченного времени обмен некоторыми водорастворимыми соединениями и ионами между клетками и внешней средой из-за разрушения «порядка» в ориентировании липидов в мембране.
Бесплатно

Статья научная
Исследовано влияние массы воды, п- ксилола, этиленгликоля, нафталина на измеряемое значение температур и теплот их превращений. Показано, что синхронный термоанализатор Netzsch 449F1 Jupiter можно успешно использовать для определения точки кипения веществ. Температуры окончания их испарения монотонно возрастают с ростом массы вещества. Показано, что с достижением определенной массы процесс кипения становится стационарным, сопровождающимся формированием линейного фронта пика кипения, близкого по наклону к наклону фронта пиков плавления различных чистых веществ. Предложена и апробирована модифицированная методика обработки данных дифференциальной сканирующей калориметрии для решения этой задачи, дающая погрешность определения точки кипения ±4 °С в случае воды, этиленгликоля и п-ксилола и ±6 °С в случае нафталина. Погрешность определения теплот кипения по данным синхронного термоанализатора составляет ±5 % в случае воды и нафталина, однако в случае этиленгликоля и п- ксилола погрешность достигает 10 и 40 % соответственно, что делает данный метод не количественным, а лишь полуколичественным или качественным в отношении определения теплот превращений. На примере антраниловой кислоты и дииодо- пара -ксилола проведена апробация метода и получены данные о температурах и теплотах превращений для данных соединений, причем теплоты превращений ранее не были известны в литературе. Так, антраниловая кислота по нашим данным имеет не описанное ранее полиморфное превращение при 91 °С с теплотой 28,5 Дж/г, плавление при 145,5 °С с теплотой 150 Дж/г и кипение при 230 °С с теплотой 310 Дж/г. Дииод- пара -ксилол по нашим данным плавится при 102 °С с теплотой 60 Дж/г и кипит при 310 °С с теплотой 95 Дж/г.
Бесплатно