Математическое моделирование. Рубрика в журнале - Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование

Статья научная
В работе получены аналитические формулы для вычисления первых четырех поправок теории возмущений дискретных полуограниченных снизу операторов, когда собственные значения невозмущенных операторов имеют произвольную кратность.
Бесплатно

Начально-конечная задача для неоднородного уравнения Буссинеска - Лява
Статья научная
Рассматривается начально-конечная задача для неоднородного уравнения Буссинеска - Лява. Проводится редукция к абстрактной начально-конечной задаче для уравнения соболевского типа второго порядка. Получены достаточные условия для однозначной разрешимости исходной и абстрактной задач.
Бесплатно

Статья научная
Объектом исследования в работе являются нелинейные обратные коэффициентные задачи для нестационарных дифференциальных уравнений высокого порядка типа псевдогиперболических. Более точно, изучаются задачи определения вместе с решением соответствующего уравнения также неизвестного коэффициента при решении или же при производной решения по временной переменной. Отличительной особенностью рассматриваемых задач является то, что неизвестный коэффициент является функцией лишь от времени. В качестве дополнительного условия в работе используется условие интегрального переопределения. Доказываются теоремы существования регулярных (имеющих все обобщенные по С.Л. Соболеву производные, входящие в уравнение) решений. Техника доказательства основана на переходе от исходной обратной задачи к новой, уже прямой, задаче для вспомогательного интегро-дифференциального уравнения, доказательстве ее разрешимости и построении по решению вспомогательной задачи решения исходной обратной задачи.
Бесплатно

Нелинейный метод проекционной регуляризации
Статья научная
В статье рассмотрен метод проекционной регуляризации, в котором параметр регуляризации выбран из принципа невязки. Получена оценка погрешности этого метода на классе корректности Мг.
Бесплатно

Новые гиперболические модели многокомпонентных гетерогенных сред
Статья научная
Разработка математически корректных и физически непротиворечивых моделей много-фазных сред является актуальной задачей, поскольку не все существующие к настоящему времени модели гетерогенных сред являются таковыми. В данной работе для многокомпонентной среды предлагаются две новые модели - в одно- и многоскоростном приближениях. Модели основаны на законах сохранения. Учитываются вязкие и теплопроводящие свойства смеси. Для приведенных моделей строятся автомодельные решения типа бегущей волны. На примере бинарной смеси расчеты, произведенные в одно- и многоскоростном приближениях. Показывается, что при использовании релаксационных законов для диссипативных процессов системы уравнений относятся к гиперболическому типу.
Бесплатно

О декомпозиции разностных схем при численном решении дифференциально-алгебраических уравнений
Статья научная
Рассматриваются квазилинейные системы обыкновенных дифференциальных уравнений (ОДУ), с тождественно вырожденной матрицей перед производной искомой вектор-функции и разностные схемы, применяемые для их решения. В работе обсуждаются условия, обеспечивающие на каждом шаге вычислительного процесса возможность последовательного решения алгебраических (конечных) уравнений и подстановки этих решений в уравнения динамики. Приведены результаты численных экспериментов для систем ОДУ, описывающих прямоточную котельную установку.
Бесплатно

О дискретизации линейных дифференциальных уравнений
Статья научная
Рассмотрены некоторые вопросы получения дискретного описания дифференциальной системы (ДС) на равномерной сетке. Рассматриваются ДС в виде системы n линейных обыкновенных дифференциальных уравнений первого порядка с постоянными коэффициентами или одно уравнение n-го порядка для наблюдаемого функционала состояния ДС. Изучаемые вопросы дискретизации важны для задач вариационной идентификации и аппроксимации динамических процессов моделями этого типа в конечном интервале. Дано сравнение аналитического равномерного (на основе теоремы Гамильтона-Кэли) и локальных методов дискретизации: на основе разделенных разностей и с помощью интерполяции выборок из n +1 отсчетов многочленами Тейлора степени n. Получена общая формула локальной дискретизации, прозволяющая сравнивать ее разностный и интерполяционные методы. Показано с использованием свойств обратных матриц Вандермонда, что в полученной общей формуле локальной дискретизации ее интерполяционному методу соответствуют (n + 1)-матрицы Тейлора (из коэффициентов многочленов Тейлора), а разностному — (n + 1)-матрицы Паскаля (из чисел треугольников Паскаля). Показано, что невырожденность матрицы наблюдаемости ДС на сетке есть необходимое и достаточное условие как для аналитической дискретизируемости, так и для приведения дискретной системы (описания ДС сетке) к каноническому фробениусовскому виду. Он эквивалентен одному обыкновенному разностному уравнению для наблюдаемой переменной с постоянными коэффициентами. Это уравнение есть основа известного вариационного метода идентификации. Показано, что интерполяционный метод локальной дискретизации есть первое (линейное) приближение формулы равномерной аналитической дискретизации. Показано, что нулевое приближение ее не зависит от коэфффициентов ДС и есть вектор коэффициентов n-й разности. Показано также, что нулевое приближение матрицы наблюдаемости ДС н и матрицы наблюдамости полиномиальной системы y (n) =0 на сетке есть n-матрица Тейлора.
Бесплатно

О задаче минимальной реализации
Статья научная
Предполагается, что для линейной конечномерной стационарной динамической системы с дискретным временем известна степень МакМиллана и конечная последовательность ее марковскиx параметров , . Рассматриваются задачи восстановления по этим данным переходной матрицы-функции системы, минимальных индексов и взаимно простых дробных факторизаций , минимальных решений соответствующих уравнений Безу, минимальной реализации . Для каждой из них существует отдельный алгоритм решения. В данной работе предлагается единый подход к исследованию этих проблем. Он основан на методе индексов и существенных многочленов конечной последовательности матриц. Этот метод был ранее разработан для явного решения задачи факторизации Винера - Хопфа мероморфных матриц-функций. Показано, что решение всех вышеуказанных задач может быть получено, как только будут найдены индексы и существенные многочлены последовательности . Вычисление индексов и существенных многочленов можно осуществить средствами линейной алгебры. Для матриц с элементами из поля рациональных чисел алгоритм реализован в среде Maple в виде процедуры ExactEssPoly.
Бесплатно

О качественном анализе семейства дифференциальных уравнений с первыми интегралами выше 2-й степени
Статья научная
Исследуется семейство дифференциальных уравнений, возникшее в результате обобщения классических интегрируемых случаев динамики твердого тела. Исследуемая система допускает полиномиальные первые интегралы 4 и 6 степени. При определенных ограничениях на параметры семейства дифференциальные уравнения интерпретируются как уравнения движения твердого тела в центральном поле сил, идеальной жидкости, электрически заряженного тела. Проводится качественный анализ уравнений: находятся особые инвариантные множества различной размерности и исследуется их устойчивость по Ляпунову. Для анализа задачи используются обобщения метода Рауса - Ляпунова и программные средства компьютерной алгебры.
Бесплатно

О корректной разрешимости задачи Коши для обобщенного телеграфного уравнения
Статья научная
В работе устанавливается равномерно корректная разрешимость задачи Коши для обобщенного телеграфного уравнения с переменными коэффициентами, частным случаем которого является классическое телеграфное уравнение. Установление корректной разрешимости математических задач является одним из основных условий при их численной реализации. Как известно, для классического телеграфного уравнения решение задачи Коши находится в классе дважды непрервно дифференцируемой функции и с помощью метода Римана выписывается в явном виде. Однако, при этом вопрос устойчивости решения в зависимости от начальных данных, требующий использования соответствующих метрических пространств в этих работах не обсуждается. Между тем этот вопрос является наиболее важным при корректной численной реализации решения задачи, когда его существование и единственность доказаны. В настоящей заметке методами теории полугрупп линейных преобразований, устанавливается равномерно корректная разрешимость задачи Коши в пространствах функций интегрируемых с экспоненциальным весом для некоторого класса дифференциальных уравнений с переменными коэффициентами. Получено точное решение задачи Коши и указаны условия на коэффициенты, при которых задача раномерно корректна в некоторых функциональных пространствах. Следствием из этих результатов является равномерная корректность задачи Коши для классического телеграфного уравнения с постоянными коэффициентами.
Бесплатно

О корректной разрешимости некоторых задач фильтрации в пористой среде
Статья научная
В работе методом теории полугрупп линейных преобразований устанавливается равномерно корректная разрешимость начально-краевых задач для одного класса интегрально-дифференциальных уравнений, рассматриваемых в ограниченной и полуограниченной областях, которые описывают процессы нестационарной фильтрации сжимающей жидкости в пористой среде. Частный случай таких уравнений на полубесконечной прямой с условием Дирихле на границе рассматривался в работе Ю.И. Бабенко. В этой работе требовалось найти градиент давления на границе области. Здесь ответ получен формальным применением дробного интегро-дифференцирования, не затрагивая вопроса о корректной разрешимости и устойчивости решения к погрешностям по исходным данным. При этом решение задачи представляется в виде формального ряда с неограниченным оператором, сходимость которого также не обсуждается. Метод теории сильно непрерывных полугрупп преобразований позволяет установить равномерно корректную разрешимость задач Дирихле и Неймана как для конечных так и бесконечных областей. Это дает возможность в случае задачи Дирихле корректно вычислить градиент давления на границе и значение решения на границе в случае условий Неймана. Здесь же доказана устойчивость решения по начальным данным.
Бесплатно

О криптоанализе системы BBCRS на двоичных кодах Рида - Маллера
Статья научная
В работе рассматривается система система BBCRS - модификация криптосистемы Мак-Элиса, предложенная М. Балди и др. В модификации матрица публичного ключа представляет собой произведение трех матриц: невырожденной -матрицы , порождающей матрицы секретного -кода и невырожденной -матрицы специального вида. Отличие системы BBCRS от системы, предложенной Р. Мак-Элисом, состоит в том, что подстановочная матрица, используемая в системе Мак-Элиса, заменена матрицей , представляющей сумму подстановочной матрицы и матрицы малого ранга . Позже В. Готье и др. построили атаку, позволяющую дешифровать сообщения в случае, когда - обобщенный код Рида - Соломона (ОРС-код) и . Ключевыми этапами построенной атаки являются, во-первых, нахождение пересечения линейных оболочек и , натянутых соответственно на строки матриц и , а во-вторых, нахождение кода по подкоду . В настоящей работе строится атака в случае, когда - двоичный код Рида - Маллера порядка и длины при . В построенной в настоящей работе атаке этапы нахождения кодов и полностью отличаются от соответствующих этапов для ОРС-кодов, а остальные шаги атаки адаптируют известные результаты криптоанализа системы BBCRS на ОРС-кодах.
Бесплатно

О моделировании с использованием дифференциально-алгебраических уравнений в частных производных
Статья научная
Рассматриваются эволюционные системы дифференциальных уравнений в частных производных, зависящие от одной пространственной переменной. Предполагается, что матрицы перед производными искомой вектор-функции вырожденные во всей области определения. Такие системы принято называть дифференциально-алгебраическими уравнениями (ДАУ) в частных производных. Свойства ДАУ существенно отличаются от свойств невырожденных систем. В частности, невозможно судить о типе систем по виду корней характеристических уравнений. В работе вводится понятие расщепляемых систем. Под такими уравнениями понимаются системы, допускающие существование невырожденных преобразований, расщепляющих исходный объект на подсистемы с единственным решением, функциональным произволом от одной из переменных и собственно невырожденную подсистему уравнений в частных производных. Этот прием позволяет исследовать структуру общих решений ДАУ и в ряде случаев установить разрешимость начально краевых задач.
Бесплатно

О модельных движениях в задаче управления при функциональных ограничениях на помеху
Статья научная
Рассматривается задача управления системой, описываемой обыкновенным дифференциальным уравнением. Предполагается, что значения управления и помехи в каждый момент времени содержатся в некоторых компактных множествах. Предполагается также, что помехи удовлетворяют некоторым дополнительным ограничениям функционального характера, отражающим природу рассматриваемой задачи. Качество управления оценивается функционалом, заданым на множестве фазовых траекторий рассматриваемой системы, и непрерывным в метрике равномерной сходимости. Ранее установлено, что стратегия с полной памятью разрешает данную задачу управления при компактных ограничениях на помеху и при других функциональных ограничениях, которые к ним сводятся. Вместе с тем, построенные для этих случаев стратегии не являлись универсальными, то есть они зависели от начальной позиции движения системы. Также оставался открытым вопрос о возможности разрешения задач управления с функциональными ограничениями в более узком (классическом) множестве стратегий - позиционных стратегий. В данной статье приводится конструкция оптимальной стратегии, использующая в цепи обратной связи вспомогательную модель управляемой системы и обладающая свойством универсальности. Даны примеры, мотивирующие расширение класса разрешающих стратегий до стратегий с полной памятью.
Бесплатно

О некоторых обратных задачах для математических моделей тепломассопереноса
Статья научная
В настоящей работе рассмотрены вопросы корректности некоторых обратных задач для математических моделей, возникающих при описании процессов тепломассопереноса. По данным первой начально-краевой задачи и условию Неймана на боковой поверхности цилиндра (таким образом, на боковой поверхности цилиндра заданы данные Коши) восстанавливаются решение параболического уравнения второго порядка и коэффициент этого уравнения, принадлежащий ядру некоторого дифференциального уравнения первого порядка и характеризующий параметры среды. Неизвестный коэффициент может в том числе входить и в главную часть дифференциального оператора. Решение уравнения ищется в пространствах Соболева с достаточно большим показателем суммируемости, а неизвестный коэффициент в классе непрерывных функций. Показано, что локально по времени задача имеет единственное устойчивое решение.
Бесплатно

О разрушении решения нелокального уравнения с градиентной нелинейностью
Статья научная
В данной работе мы продолжим рассмотрение уравнений с градиентными нелинейностями. Мы рассмотрим начально-краевую задачу в ограниченной области с гладкой границей для нелокального по времени уравнения с градиентной нелинейностью и докажем локальную разрешимость в сильном обобщенном смысле, кроме того, мы получим достаточные условия разрушения за конечное время и достаточные условия глобальной во времени разрешимости.
Бесплатно

О распространении слабых сигналов в сплошных средах
Статья научная
Рассматривается метод определения скорости распространения слабых сигналов в различных средах - идеальных, неидеальных (с отличным от нуля девиатором напряжений) и многокомпонентных. Что касается идеальных сред, то формула Лапласа для скорости звука C 2=(dP/dp) s настолько широко применяется во всем мире в течение длительного времени, что она воспринимается как определение скорости звука. В работе показано, что эта формула является не определением, а следствием рассмотрения законов сохранения массы импульса и энергии в случае малых возмущений в среде с произвольным уравнением состояния. Точно такое же рассмотрение в случае упругой изотропной среды позволяет выразить скорости распространения продольных и поперечных малых возмущений через свойства твердого тела. Эти зависимости достаточно хорошо изучены в теории упругости, хотя иногда встречаются работы по механике сплошных сред, содержащие несколько иные, чем общепринятые, связи скоростей продольных и поперечных возмущений с гидродинамической скоростью звука. Их обсуждение в данной статье вызвано необходимостью продемонстрировать общность применяемого метода. Наконец, в случае многокомпонентных сред метод приводит к уравнению для скорости звука смеси, принципиально отличному от широко применяемого. В работе дается обоснование нового уравнения, выражающего скорость звука смеси через скорости звука и концентрации компонентов.
Бесплатно

Статья научная
В настоящее время, при анализе сложных электрических и электронных схем, часто встречаются системы, включающие в себя взаимосвязанные дифференциальные, интегральные и алгебраические уравнения. Алгебраические уравнения отвечают за отличие в моделях балансовых соотношений, в частности, законов сохранения или уравнений состояния, системы дифференциальных уравнений описывают динамику процесса. Если процесс обладает последействием, то математическая модель может включать и интегральные уравнения (ИУ). Системы взаимосвязанных дифференциальных, алгебраических и интегральных уравнений можно записать в виде векторных интегро-дифференциальных уравнений с матрицей неполного ранга в области определения при старшей производной искомой вектор-функции. Численное решение краевых и начальных задач для таких систем сопряжено с большими трудностями. В данной работе обсуждается метод наименьших квадратов и приведены результаты численных расчетов.
Бесплатно

О решении одной обратной задачи, моделирующей двумерное движение вязкой жидкости
Статья научная
Рассматривается обратная начально-краевая задача для линейного параболического уравнения, которая возникает при математическом моделировании двумерных ползущих движений вязкой жидкости в плоском канале. Неизвестная функция времени входит в правую часть уравнения аддитивно и находится из дополнительного условия интегрального переопределения. Поставленная задача имеет два разных интегральных тождества, которые позволяют получить априорные оценки решения в равномерной метрике и доказать теорему единственности. При некоторых ограничениях на входные данные решение построено в виде ряда по специальному базису. Для этого задача путем дифференцирования по пространственной переменной сводится к прямой неклассической задаче с двумя интегральными условиями вместо обычных краевых. Новая задача решается методом разделения переменных, позволяющим найти неизвестные функции в виде быстро сходящихся рядов. Другой, стандартный, метод решения исходной задачи состоит в сведении ее к нагруженному уравнению и первой начально-краевой задаче для него. В свою очередь, эта задача сведена к одномерному по времени операторному уравнению Вольтерры со специальным ядром. Доказано, что оно имеет решение в виде ряда. Установлены некоторые вспомогательные формулы, полезные при численном решении этого уравнения методом преобразования Лапласа. Установлены достаточные условия, при которых решение с ростом времени выходит на стационарный режим по экспоненциальному закону.
Бесплатно

О свойствах решений краевой задачи, моделирующей термокапиллярное течение
Статья научная
Исследуется обратная начально-краевая задача, возникающая при математическом моделировании специальных термокапиллярных двумерных движений жидкости вблизи точки экстремума температуры на твердой стенке. Одна из компонент поля скоростей рассматриваемого движения линейно зависит от продольной координаты, что согласуется с квадратичной зависимостью поля температур от этой же координаты. При малых числах Марангони задача аппроксимируется линейной, решение которой находится в явном виде для стационарного течения. Приведены результаты вычисления нулевого и первого приближения решения обратной стационарной задачи. В нестационарном случае решение определяется в виде квадратур в пространстве изображений по Лапласу. Показано, что если температура на твердой стенке стабилизируется с ростом времени, то решение стремится к найденному стационарному режиму. Приведены численные результаты обращения преобразования Лапласа, подтверждающие теоретические выводы на примере моделирования процесса возникновения термокапиллярного движения из состояния покоя в слое трансформаторного масла. Показано, что, выбирая тот или иной тепловой режим на твердой стенке, можно управлять движением жидкости внутри слоя.
Бесплатно