Математическое моделирование. Рубрика в журнале - Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование

Публикации в рубрике (308): Математическое моделирование
все рубрики
О криптоанализе системы BBCRS на двоичных кодах Рида - Маллера

О криптоанализе системы BBCRS на двоичных кодах Рида - Маллера

Косолапов Юрий Владимирович, Лелюк Анастасия Андреевна

Статья научная

В работе рассматривается система система BBCRS - модификация криптосистемы Мак-Элиса, предложенная М. Балди и др. В модификации матрица публичного ключа представляет собой произведение трех матриц: невырожденной -матрицы , порождающей матрицы секретного -кода и невырожденной -матрицы специального вида. Отличие системы BBCRS от системы, предложенной Р. Мак-Элисом, состоит в том, что подстановочная матрица, используемая в системе Мак-Элиса, заменена матрицей , представляющей сумму подстановочной матрицы и матрицы малого ранга . Позже В. Готье и др. построили атаку, позволяющую дешифровать сообщения в случае, когда - обобщенный код Рида - Соломона (ОРС-код) и . Ключевыми этапами построенной атаки являются, во-первых, нахождение пересечения линейных оболочек и , натянутых соответственно на строки матриц и , а во-вторых, нахождение кода по подкоду . В настоящей работе строится атака в случае, когда - двоичный код Рида - Маллера порядка и длины при . В построенной в настоящей работе атаке этапы нахождения кодов и полностью отличаются от соответствующих этапов для ОРС-кодов, а остальные шаги атаки адаптируют известные результаты криптоанализа системы BBCRS на ОРС-кодах.

Бесплатно

О моделировании с использованием дифференциально-алгебраических уравнений в частных производных

О моделировании с использованием дифференциально-алгебраических уравнений в частных производных

Нгуен Хак Диеп, Чистяков Виктор Филимонович

Статья научная

Рассматриваются эволюционные системы дифференциальных уравнений в частных производных, зависящие от одной пространственной переменной. Предполагается, что матрицы перед производными искомой вектор-функции вырожденные во всей области определения. Такие системы принято называть дифференциально-алгебраическими уравнениями (ДАУ) в частных производных. Свойства ДАУ существенно отличаются от свойств невырожденных систем. В частности, невозможно судить о типе систем по виду корней характеристических уравнений. В работе вводится понятие расщепляемых систем. Под такими уравнениями понимаются системы, допускающие существование невырожденных преобразований, расщепляющих исходный объект на подсистемы с единственным решением, функциональным произволом от одной из переменных и собственно невырожденную подсистему уравнений в частных производных. Этот прием позволяет исследовать структуру общих решений ДАУ и в ряде случаев установить разрешимость начально краевых задач.

Бесплатно

О модельных движениях в задаче управления при функциональных ограничениях на помеху

О модельных движениях в задаче управления при функциональных ограничениях на помеху

Серков Дмитрий Александрович

Статья научная

Рассматривается задача управления системой, описываемой обыкновенным дифференциальным уравнением. Предполагается, что значения управления и помехи в каждый момент времени содержатся в некоторых компактных множествах. Предполагается также, что помехи удовлетворяют некоторым дополнительным ограничениям функционального характера, отражающим природу рассматриваемой задачи. Качество управления оценивается функционалом, заданым на множестве фазовых траекторий рассматриваемой системы, и непрерывным в метрике равномерной сходимости. Ранее установлено, что стратегия с полной памятью разрешает данную задачу управления при компактных ограничениях на помеху и при других функциональных ограничениях, которые к ним сводятся. Вместе с тем, построенные для этих случаев стратегии не являлись универсальными, то есть они зависели от начальной позиции движения системы. Также оставался открытым вопрос о возможности разрешения задач управления с функциональными ограничениями в более узком (классическом) множестве стратегий - позиционных стратегий. В данной статье приводится конструкция оптимальной стратегии, использующая в цепи обратной связи вспомогательную модель управляемой системы и обладающая свойством универсальности. Даны примеры, мотивирующие расширение класса разрешающих стратегий до стратегий с полной памятью.

Бесплатно

О некоторых обратных задачах для математических моделей тепломассопереноса

О некоторых обратных задачах для математических моделей тепломассопереноса

Пятков Сергей Григорьевич, Боричевская Альбина Генадьевна

Статья научная

В настоящей работе рассмотрены вопросы корректности некоторых обратных задач для математических моделей, возникающих при описании процессов тепломассопереноса. По данным первой начально-краевой задачи и условию Неймана на боковой поверхности цилиндра (таким образом, на боковой поверхности цилиндра заданы данные Коши) восстанавливаются решение параболического уравнения второго порядка и коэффициент этого уравнения, принадлежащий ядру некоторого дифференциального уравнения первого порядка и характеризующий параметры среды. Неизвестный коэффициент может в том числе входить и в главную часть дифференциального оператора. Решение уравнения ищется в пространствах Соболева с достаточно большим показателем суммируемости, а неизвестный коэффициент в классе непрерывных функций. Показано, что локально по времени задача имеет единственное устойчивое решение.

Бесплатно

О разрушении решения нелокального уравнения с градиентной нелинейностью

О разрушении решения нелокального уравнения с градиентной нелинейностью

Корпусов Максим Олегович

Статья научная

В данной работе мы продолжим рассмотрение уравнений с градиентными нелинейностями. Мы рассмотрим начально-краевую задачу в ограниченной области с гладкой границей для нелокального по времени уравнения с градиентной нелинейностью и докажем локальную разрешимость в сильном обобщенном смысле, кроме того, мы получим достаточные условия разрушения за конечное время и достаточные условия глобальной во времени разрешимости.

Бесплатно

О распространении слабых сигналов в сплошных средах

О распространении слабых сигналов в сплошных средах

Куропатенко Валентин Федорович

Статья научная

Рассматривается метод определения скорости распространения слабых сигналов в различных средах - идеальных, неидеальных (с отличным от нуля девиатором напряжений) и многокомпонентных. Что касается идеальных сред, то формула Лапласа для скорости звука C 2=(dP/dp) s настолько широко применяется во всем мире в течение длительного времени, что она воспринимается как определение скорости звука. В работе показано, что эта формула является не определением, а следствием рассмотрения законов сохранения массы импульса и энергии в случае малых возмущений в среде с произвольным уравнением состояния. Точно такое же рассмотрение в случае упругой изотропной среды позволяет выразить скорости распространения продольных и поперечных малых возмущений через свойства твердого тела. Эти зависимости достаточно хорошо изучены в теории упругости, хотя иногда встречаются работы по механике сплошных сред, содержащие несколько иные, чем общепринятые, связи скоростей продольных и поперечных возмущений с гидродинамической скоростью звука. Их обсуждение в данной статье вызвано необходимостью продемонстрировать общность применяемого метода. Наконец, в случае многокомпонентных сред метод приводит к уравнению для скорости звука смеси, принципиально отличному от широко применяемого. В работе дается обоснование нового уравнения, выражающего скорость звука смеси через скорости звука и концентрации компонентов.

Бесплатно

О решении краевых задач для вырожденных систем линейных интегро-дифференциальных уравнений методом наименьших квадратов

О решении краевых задач для вырожденных систем линейных интегро-дифференциальных уравнений методом наименьших квадратов

Нгуен Банг Дык, Чистяков Виктор Филимонович

Статья научная

В настоящее время, при анализе сложных электрических и электронных схем, часто встречаются системы, включающие в себя взаимосвязанные дифференциальные, интегральные и алгебраические уравнения. Алгебраические уравнения отвечают за отличие в моделях балансовых соотношений, в частности, законов сохранения или уравнений состояния, системы дифференциальных уравнений описывают динамику процесса. Если процесс обладает последействием, то математическая модель может включать и интегральные уравнения (ИУ). Системы взаимосвязанных дифференциальных, алгебраических и интегральных уравнений можно записать в виде векторных интегро-дифференциальных уравнений с матрицей неполного ранга в области определения при старшей производной искомой вектор-функции. Численное решение краевых и начальных задач для таких систем сопряжено с большими трудностями. В данной работе обсуждается метод наименьших квадратов и приведены результаты численных расчетов.

Бесплатно

О решении одной обратной задачи, моделирующей двумерное движение вязкой жидкости

О решении одной обратной задачи, моделирующей двумерное движение вязкой жидкости

Андреев Виктор Константинович

Статья научная

Рассматривается обратная начально-краевая задача для линейного параболического уравнения, которая возникает при математическом моделировании двумерных ползущих движений вязкой жидкости в плоском канале. Неизвестная функция времени входит в правую часть уравнения аддитивно и находится из дополнительного условия интегрального переопределения. Поставленная задача имеет два разных интегральных тождества, которые позволяют получить априорные оценки решения в равномерной метрике и доказать теорему единственности. При некоторых ограничениях на входные данные решение построено в виде ряда по специальному базису. Для этого задача путем дифференцирования по пространственной переменной сводится к прямой неклассической задаче с двумя интегральными условиями вместо обычных краевых. Новая задача решается методом разделения переменных, позволяющим найти неизвестные функции в виде быстро сходящихся рядов. Другой, стандартный, метод решения исходной задачи состоит в сведении ее к нагруженному уравнению и первой начально-краевой задаче для него. В свою очередь, эта задача сведена к одномерному по времени операторному уравнению Вольтерры со специальным ядром. Доказано, что оно имеет решение в виде ряда. Установлены некоторые вспомогательные формулы, полезные при численном решении этого уравнения методом преобразования Лапласа. Установлены достаточные условия, при которых решение с ростом времени выходит на стационарный режим по экспоненциальному закону.

Бесплатно

О свойствах решений краевой задачи, моделирующей термокапиллярное течение

О свойствах решений краевой задачи, моделирующей термокапиллярное течение

Андреев Виктор Константинович

Статья научная

Исследуется обратная начально-краевая задача, возникающая при математическом моделировании специальных термокапиллярных двумерных движений жидкости вблизи точки экстремума температуры на твердой стенке. Одна из компонент поля скоростей рассматриваемого движения линейно зависит от продольной координаты, что согласуется с квадратичной зависимостью поля температур от этой же координаты. При малых числах Марангони задача аппроксимируется линейной, решение которой находится в явном виде для стационарного течения. Приведены результаты вычисления нулевого и первого приближения решения обратной стационарной задачи. В нестационарном случае решение определяется в виде квадратур в пространстве изображений по Лапласу. Показано, что если температура на твердой стенке стабилизируется с ростом времени, то решение стремится к найденному стационарному режиму. Приведены численные результаты обращения преобразования Лапласа, подтверждающие теоретические выводы на примере моделирования процесса возникновения термокапиллярного движения из состояния покоя в слое трансформаторного масла. Показано, что, выбирая тот или иной тепловой режим на твердой стенке, можно управлять движением жидкости внутри слоя.

Бесплатно

О семействах решений интегральных уравнений Вольтерры первого рода с разрывными ядрами

О семействах решений интегральных уравнений Вольтерры первого рода с разрывными ядрами

Сидоров Денис Николаевич

Статья научная

Предложен метод построения параметрических семейств непрерывных решений одного класса интегральных уравнений Вольтерры первого рода, возникающих в теории развивающихся систем. Ядра рассматриваемых уравнений допускают разрывы первого рода на монотонно возрастающих кривых. В явном виде построено характеристическое алгебраическое уравнение. Отдельно изучается регулярный случай, когда характеристическое уравнение не имеет натуральных корней и решение интегрального уравнения единственное. В нерегулярном случае характеристическое уравнение имеет натуральные корни, а решение рассматриваемого интегрального уравнения содержит произвольные постоянные. При этом решение может быть неограниченными, если характеристическое уравнение имеет нулевой корень. Показано, что число произвольных постоянных, входящих в решение, зависит от кратности натуральных корней характеристического уравнения. Доказаны теоремы существования параметрических семейств решений и строится их асимптотика с помощью логарифмо-степенных полиномов. Асимптотика может уточняться численно или последовательными приближениями.

Бесплатно

О сильных решениях одной модели термовязкоупругости типа Олдройда

О сильных решениях одной модели термовязкоупругости типа Олдройда

Орлов Владимир Петрович, Паршин Максим Игоревич

Статья научная

Для начально-граничной задачи динамики термовязкоупругой среды типа Олдройда в плоском случае установлена локальная теорема существования сильного решения. Изучаемая сплошная среда является ограниченной областью на плоскости с достаточно гладкой границей. Рассматриваемая система уравнений является обобщением системы Навье-Стокса-Фурье и получается из нее путем добавления в тензор напряжений интегрального слагаемого, отвечающего за память среды. Вначале рассматривается начально-граничная задача для системы вязкоупругости типа Олдройда с переменной вязкостью. Затем рассматривается начально-граничная задача для уравнения сохранения энергии с переменным коэффициентом теплопроводности и интегральной частью. Разрешимость этих задач устанавливается путем сведения к операторным уравнениям, для разрешимости которых применяется принцип сжимающих отображений. Для разрешимости исходной системы термовязкоупругости устраивается итерационный процесс, заключающийся в последовательном решении вспомогательных задач. Подходящие априорные оценки дают сходимость последовательных приближений на достаточно малом временном промежутке. Докозательство существенным образом опирается на результаты L. Consiglieri о разрешимости соответствующей системы Навье - Стокса - Фурье.

Бесплатно

О скорости сходимости стационарного метода Галеркина для уравнения смешанного типа

О скорости сходимости стационарного метода Галеркина для уравнения смешанного типа

Егоров Иван Егорович, Тихонова Ирина Михайловна

Статья научная

В работе изучается краевая задача В.Н. Врагова для уравнения смешанного типа второго порядка, когда уравнение принадлежит эллиптическому типу вблизи оснований цилиндрической области. С помощью стационарного метода Галеркина доказана однозначная регулярная разрешимость краевой задачи при определенных условиях на коэффициенты и правую часть уравнения. При этом установлены априорные оценки для уравнения смешанного типа, которым удовлетворяют приближенные решения. Получена оценка скорости сходимости стационарного метода Галеркина в норме пространства Соболева W 1 2, через собственные функции оператора Лапласа по пространственным переменным и по времени. При выводе оценки скорости сходимости метода Галеркина существенно используется разложение решения исходной краевой задачи в ряд Фурье по собственным функциям оператора Лапласа и известное равенство Парсеваля.

Бесплатно

О совершенных шифрах на основе ортогональных таблиц

О совершенных шифрах на основе ортогональных таблиц

Рацеев Сергей Михайлович, Череватенко Ольга Ивановна

Статья научная

В работе исследуются совершенные шифры, стойкие к имитации и подмене шифрованных сообщений. Особо выделен случай, когда вероятности имитации и подмены достигают нижних границ. Хорошо известно, что шифр гаммирования с равновероятной гаммой является совершенным, но максимально уязвимым к попыткам имитации и подмены. Это происходит потому, что в шифре гаммирования алфавиты для записи открытых и шифрованных текстов равномощны. Так как одним из недостатков математической модели шифра являются ограничения, накладываемые на мощности множеств открытых текстов и ключей, то сначала приводится математическая модель шифра замены с неограниченным ключом, предложенная А.Ю. Зубовым. На основе данной модели в работе приводятся конструкции совершенных шифров, стойких к имитации и подмене. Данные шифры строятся на основе ортогональных таблиц и латинских прямоугольников. Рассматривается случай, когда случайный генератор ключевых последовательностей не обязательно имеет равномерное распределение вероятностей. Так как длины ключей таких шифров не меньше длин передаваемых сообщений, то шифры замены с неограниченным ключом целесообразно использовать в исключительно важных случаях.

Бесплатно

О сходимости масштабируемого алгоритма построения псевдопроекции на выпуклое замкнутое множество

О сходимости масштабируемого алгоритма построения псевдопроекции на выпуклое замкнутое множество

Ершова Арина Владимировна, Соколинская Ирина Михайловна

Статья научная

Доказывается теорема сходимости для алгоритма построения псевдопроекции на выпуклое замкнутое множество. Данный алгоритм является основной частью итерационного метода решения задачи сильной отделимости и допускает эффективное распараллеливание на большом количестве процессоров.

Бесплатно

О фокусировке цилиндрически симметричной ударной волны в газе

О фокусировке цилиндрически симметричной ударной волны в газе

Куропатенко Валентин Федорович, Магазов Фарит Гареевич, Шестаковская Елена Сергеевна

Статья научная

В лагранжевых координатах построено аналитическое решение задачи о сходящейся ударной волне в цилиндрическом сосуде с непроницаемой стенкой для произвольных показателей автомодельности. На границе цилиндра задана отрицательная скорость. В начальный момент времени из этой точки начнет распространяться ударная волна к центру симметрии. Граница цилиндра будет двигаться по определенному закону, согласованному с движением ударной волны. В эйлеровых переменных она движется, но в лагранжевых переменных ее траектория является вертикальной линией. Вообще говоря, все траектории частиц являются вертикальными линиями, вдоль которых сохраняется то значение энтропии, которое возникло на ударной волне. Получены уравнения, определяющие структуру течения газа между фронтом ударной волны и границей, как функции времени и лагранжевой координаты, а так же зависимость энтропии от скорости ударной волны. Задача решена в лагранжевых координатах и принципиально отличается от ранее известных постановок задачи о схождении автомодельной ударной волны к центру симметрии и ее отражении от центра, которые построены для бесконечной области в эйлеровых координатах для единственного значения коэффициента автомодельности соответствующего единственному значению показателя адиабаты.

Бесплатно

Об измерении "белого шума"

Об измерении "белого шума"

Шестаков Александр Леонидович, Свиридюк Георгий Анатольевич

Статья научная

В рамках теории уравнений леонтьевского типа рассмотрена математическая модель измерительного устройства, демонстрирующая эффект механической инерционности. При изучении модели с детерминированным внешним сигналом очень полезными оказались методы и результаты теории уравнений соболевского типа и вырожденных групп операторов, поскольку они позволили создать эффективный вычислительный алгоритм. Теперь в модели предполагается наряду с детерминированным сигналом наличие белого шума. Поскольку модель представлена вырожденной системой обыкновенных дифференциальных уравнений, то к ней трудно применимы существующие ныне подходы Ито - Стратоновича - Скорохода и Мельниковой - Филинкова - Альшанского, в которых белый шум понимается как обобщенная производная винеровского процесса. Вместо этого предлагается новая концепция «белого шума», равного симметрической производной в среднем (в статье - производной Нельсона - Гликлиха) винеровского процесса, причем подмечено, что в рамках теории Эйнштейна - Смолу-ховского данная производная совпадает с «обычной» производной броуновского движения. В первой части статьи собраны основные факты теории производной Нельсона - Гликлиха, адаптированные к рассматриваемой ситуации. Во второй - рассмотрена ослабленная задача Шоуолтера - Сидорова и даны точные формулы ее решения. В качестве примера приведена конкретная модель измерительного устройства.

Бесплатно

Об интеграле Помпею и некоторых его обобщениях

Об интеграле Помпею и некоторых его обобщениях

Солдатов Александр Павлович

Статья научная

Даны оценки классического интеграла Помпею, рассматриваемого на всей комплексной плоскости с особыми точками и, в семействах различных весовых пространств. Этот интеграл играет ключевую роль в теории обобщенных аналитических функций И.Н. Векуа, которая широко используется при моделировании различных процессов - трансзвуковых течений газа, состояний безмоментного напряженного равновесия выпуклых оболочек и многих других. Более точно, описываются весовые порядки , для которых этот оператор ограничен из весового пространстве функций, суммируемых с -ой степенью, в весовое пространство гельдеровых функций. Аналогичные оценки получены также для более общих интегралов с разностным ядром. Указаны приложения этих результатов к эллиптическим системам первого порядка на плоскости, которые, в частности, включают математические модели плоской теории упругости (система Ламе) в общем анизотропном случае и играют центральную роль в теории обобщенных аналитических функций И.Н. Векуа.

Бесплатно

Об одной задаче маршрутизации с неаддитивным агрегированием затрат

Об одной задаче маршрутизации с неаддитивным агрегированием затрат

Ченцов Александр Георгиевич, Ченцов Алексей Александрович, Сесекин Александр Николаевич

Статья научная

Исследуется задача последовательного обхода мегаполисов (непустых конечных множеств) с условиями предшествования и неаддитивным агрегированием затрат. Предполагается, что на уровне (при оценивании системы циклов, определяемых всякий раз этапами внешнего перемещения и внутренних работ) вариант агрегирования отвечает задаче узкие места с корректирующим параметром. На уровне (в пределах цикла) агрегирование затрат на внешнее перемещение и проведение работ может быть произвольным. Построен вариант процедуры динамического программирования, включая экономичный вариант, использующий условия предшествования. Оптимальный алгоритм на основе ДП реализован в виде программы для ПЭВМ в случае постановки, ориентированной на задачу об управлении автономной системой, функционирующей в агрессивной среде и осуществляющей последовательно процесс демонтажа источников воздействий (данной среды) на систему. Эта постановка может отвечать инженерной задаче о демонтаже источников радиационного излучения при аварийных ситуациях на АЭС в случае применения роботизированной системы с электронным оборудованием, функционирование которого возможно лишь при соблюдении допусков на интенсивность радиационного воздействия в течении всего временного промежутка. Для данного варианта общей постановки проведен вычислительный эксперимент с применением ПЭВМ.

Бесплатно

Об одной задаче маршрутизации, ориентированной на проблему демонтажа радиационно опасных объектов

Об одной задаче маршрутизации, ориентированной на проблему демонтажа радиационно опасных объектов

Ченцов Александр Георгиевич, Ченцов Алексей Александрович

Статья научная

Рассматривается задача последовательного обхода мегаполисов при наличии условий предшествования и функций стоимости с зависимостью от списка заданий, не выполненных на текущий момент времени. Оптимизируется выбор маршрутного процесса, включающего перестановку индексов, траекторию и точку старта; оптимизируется также точка финиша. Используется аддитивный критерий, получаемый суммированием затрат на внешние (по отношению к мегаполисам) перемещения, затраты на проведение работ, связанных с посещением мегаполисов, а также оценки терминального состояния. Исследуется процедура построения оптимального решения на основе широко понимаемого динамического программирования. Постановка ориентирована на задачу демонтажа системы радиационно опасных источников; при этом допускается, что демонтированы будут не все источники (это возможно при получении работниками предельных доз радиации), что потребует эвакуации в условиях радиационного воздействия источников, оставшихся недемонтированными. Конкретный вариант критерия сводится к суммарной дозе радиации, получаемой работником как на этапе демонтажа, так и на этапе эвакуации. На основе теоретических конструкций построен алгоритм, реализованный на ПЭВМ; проведен вычислительный эксперимент.

Бесплатно

Об одном алгоритме псевдообращения динамических систем

Об одном алгоритме псевдообращения динамических систем

Аникин Сергей Алексеевич

Статья научная

Рассматривается задача псевдообращения динамической системы (восстановления нормального входа системы по результатам измерения ее выхода). Под входом понимается пара: начальное состояние и входное воздействие на систему (управление, возмущение и т.д.), под нормальным входом - вход, имеющий минимальную норму на множестве всех входов, совместимых с данным выходом. Выход системы представляет собой функцию от времени, состояния системы и входного воздействия. Динамика системы описывается линейным обыкновенным дифференциальным уравнением. Задача псевдообращения решается путем редукции исходной динамической системы к некоторой эквивалентной системе, допускающей получение нормального входа в явном виде. Редукция осуществляется с помощью конечного числа алгебраических операций и операций дифференцирования. Явный вид нормального входа редуцированной системы получен из явного решения некоторой вспомогательной параметрической задачи оптимального управления с помощью операции предельного перехода.

Бесплатно

Журнал