Статьи журнала - Владикавказский математический журнал
Все статьи: 907
Сходимость процессов Лагранжа - Штурма - Лиувилля для непрерывных функций ограниченной вариации
Статья научная
Установлена равномерная сходимость внутри интервала (a,b)⊂[0,π] процессов Лагранжа, построенных по собственным функциям задачи Штурма - Лиувилля LSLn(f,x)=∑nk=1f(xk,n)Un(x)U′n(xk,n)(x-xk,n). Непрерывные на [0,π] функции f ограниченной вариации на (a,b)⊂[0,π] могут быть равномерно приближены внутри интервала (a,b)⊂[0,π]. Получен признак равномерной сходимости внутри интервала (a,b) интерполяционных процессов, построенных по собственным функциям регулярной задачи Штурма - Лиувилля. Условие признака сформулировано в терминах максимума суммы модулей разделенных разностей функции f. Вне интервала (a,b) построенный интерполяционный процесс может расходиться. Установлена ограниченность в совокупности фундаментальных функций Лагранжа, построенных по собственным функциям задачи Штурма - Лиувилля. Рассмотрен случай регулярной задачи Штурма - Лиувилля с непрерывным потенциалом ограниченной вариации. Изучены краевые условия задачи Штурма - Лиувилля третьего рода без условий Дирихле. При наличии сервисных функций вычисления собственных функций регулярной задачи Штурма - Лиувилля изучаемый оператор Лагранжа - Штурма - Лиувилля легко реализуется на вычислительной технике.
Бесплатно
Сценарии критической вспышки численности инвазионного вида в модификации уравнения Гомпертца
Статья научная
В работе обсуждается проблема моделирования вариантов развития ситуаций экстремального характера в популяционном процессе, способных возникать из-за активного размножения чужеродных видов. Для математической формализации явлений использованы уравнения с отклоняющимся аргументом. В данном экологическом контексте интересно рассмотреть не возникновение циклов или свойств устойчивых колебательных режимов в решениях уравнений, а проведение поиска специфических переходных сценариев популяционной динамики. Предлагается последовательно ряд модификаций на основе уравнения Гомпертца, как оказалось, подходящего для совершенствования не менее обоснованно, чем модели Хатчинсона или Николсона. В вариантах с учетом функции сопротивления биотического окружения получены сценарии гибели популяции после вспышки и образования устойчивой малочисленной группы с прохождением предельно допустимой барьерной численности. Полученные вычислительные сценарии имеют практическую интерпретацию при анализе развития событий после вселения опасных новых видов в консервативные экосистемы...
Бесплатно
Сценарий невынужденной деструкции популяции в модификации уравнения Хатчинсона
Статья научная
Рассматривается проблема моделирования резких изменений в режиме автоколебаний, присущих видам, которые способны воздействовать на среду своего обитания. Актуальность работы обусловлена необходимостью совершенствования методов математической биологии для все чаще проявляющихся нестационарных и экстремальных типов популяционной динамики. Стремительные переходы к резким флуктуациям численности возникают при инвазиях активно размножающихся видов вредителей. Предложена модификация уравнения Хатчинсона с учетом существенной роли достижения предпороговой численности, меньшей предельной емкости экологической ниши K из уравнения Ферхюльста, и существенно большей нижней пороговой численности L из уравнения Базыкина. В нашем уравнении при изменении действующего запаздывания регуляции τ описывается атипичный сценарий развития опасной вспышки насекомых. Как следует из экологических примеров, популяционные циклы с большой амплитудой часто оказываются неустойчивы. Часто цикл - переходный режим. Не всегда происходит плавное затухание осцилляций N∗(r,t)→K. В новой модели после бифуркации Андронова - Хопфа при τ^=τ∗+ξ и появления автоколебаний негармонической формы с увеличением их амплитуды резко происходит потеря диссипативного свойства траектории. Вычислительный сценарий с внезапным выходом неустановившегося цикла N∗(τ^r,t) из области допустимых значений численности интерпретируется как специфическое нарушение функционирования среды, ведущее к деструкции биосистемы в очаге вспышки насекомых или безвозвратной гибели в случае островной популяции млекопитающих.
Бесплатно
Тень билинейного регулярного оператора
Статья научная
Рассматриваются формулы проектирования на тень билинейного регулярного оператора, а также на полосу, порожденную решеточным биморфизмом.
Бесплатно
Теорема Банаха об обратном операторе в пространствах Банаха - Канторовича
Статья научная
В статье доказывается аналог теоремы Банаха об обратном операторе для операторов, действующих в пространствах Банаха - Канторовича.
Бесплатно
Теорема Гельфанда - Мазура для C*-алгебр над кольцом измеримых функций
Статья научная
Установлено, что всякая C*-алгебра классов эквивалентности измеримых сечений, элементы с единичным носителем которого обратимы, изоморфна алгебре измеримых функций.
Бесплатно
Теорема Крейна - Мильмана для однородных полиномов
Статья научная
Настоящая заметка посвящена задаче о восстановлении выпуклого множества однородных полиномов по крайним точкам, т. е. обоснованию полиномиального варианта классической теоремы Крейна - Мильмана. В этом направлении мало, что сделано; имеющиеся работы большей частью посвящены описанию крайних точек единичного шара в пространстве однородных полиномов в разных специальных случаях. Даже в случае линейных операторов классическая теорема Крейна - Мильмана не работает, так как замкнутые выпуклые множества операторов лишь в очень частных случаях оказываются компактными в какой-нибудь естественной топологии. В 1980-х годах был предложен новый подход к изучению экстремальной структуры выпуклых множеств линейных операторов на основе теории пространств Канторовича и получена операторная форма теоремы Крейна - Мильмана. Комбинируя упомянутый подход с методом линеаризации однородных полиномов, в настоящей работе получен вариант теоремы Крейна - Мильмана для однородных полиномов. А именно, показано, что слабо порядково ограниченное, операторно выпуклое и поточечно порядково замкнутое множество однородных полиномов, действующих из векторного пространства в пространство Канторовича, является замыканием относительно поточечной порядковой сходимости операторно выпуклой оболочки своих крайних точек. Получено также мильмановское обращение теоремы Крейна - Мильмана для однородных полиномов: крайние точки наименьшего операторно выпуклого поточечно порядково замкнутого множества, содержащего данное множество A однородных полиномов, представляют собой поточечные равномерные пределы подходящих сетей перемешиваний элементов A. Под перемешиванием семейства полиномов со значениями в пространстве Канторовича понимается (бесконечная) сумма этих полиномов, умноженных на попарно дизъюнктные порядковые проекторы в упомянутом пространстве Каторовича, сумма которых равна тождественному оператору.
Бесплатно
Теорема деления в некоторых весовых пространствах целых функций
Статья научная
Рассматриваются весовые пространства целых функций, двойственные пространствам ультрадифференцируемых функций Берлинга нормального типа. Основной результат - теорема деления, в которой полностью характеризуются все делители данных пространств. В качестве приложения установлен критерий разрешимости уравнений свертки в классах Берлинга нормального типа.
Бесплатно
Теорема о вложении элементарной сети
Статья научная
Пусть Λ - произвольное коммутативное кольцо с единицей, n - натуральное число, n≥2. Система σ=(σij), 1≤i,j≤n, аддитивных подгрупп σij кольца Λ называется сетью (ковром) над кольцом Λ порядка n, если σirσrj⊆σij при всех значениях индексов i, r, j. Сеть, рассматриваемая без диагонали, называется элементарной сетью. Элементарная сеть σ=(σij), 1≤i≠j≤n, называется дополняемой (до полной сети), если для некоторых аддитивных подгрупп (точнее, подколец) σii кольца Λ таблица (с диагональю) σ=(σij),1≤i,j≤n является (полной) сетью. Другими словами, элементарная сеть σ является дополняемой, если ее можно дополнить (диагональю) до (полной) сети. Пусть σ=(σij) - элементарная сеть над кольцом Λ порядка n. Рассмотрим набор ω=(ωij) аддитивных подгрупп ωij кольца Λ, определенных для любых i≠j формулой ωij=∑nk=1σikσkj, где суммирование берется по всем k, отличным от i и j. Набор ω=(ωij) аддитивных подгрупп ωij кольца Λ является элементарной сетью, которую мы называем элементарной производной сетью. Элементарную сеть ω можно дополнить до (полной) сети стандартным способом, а также другим способом, который мы предлагаем в статье. Вводится также понятие сети Ω=(Ωij), которую мы называем сетью, ассоциированной с элементарной группой E(σ). Следующая теорема является основным результатом статьи: Элементарная сеть σ индуцирует элементарную производную сеть ω=(ωij) и сеть Ω=(Ωij), ассоциированную с элементарной группой E(σ), причем ω⊆σ⊆Ω. Если ω=(ωij) дополнить диагональю до полной стандартным способом, то для произвольного r и любых i≠j будет ωirΩrj⊆ωij и Ωirωrj⊆ωij. Если же ω=(ωij) дополнить диагональю до полной вторым способом, то последние включения выполняются для любых i, r, j.
Бесплатно
Статья научная
Сформулирована и доказана теорема о плотности пространства бесконечно дифференцируемых функций в анизотропных пространствах Соболева при некоторых условиях, наложенных на область.
Бесплатно
Теоремы вложения для весовых функциональных пространств Бесова со смешанной нормой
Статья научная
Устанавливается теорема вложения весового функционального пространства $B^{\bar l}_{(\bar p)}\Epl n_{\bar\alpha,\theta}$ в весовое функциональное пространство $B^{\bar r}_{(\bar q)}\Epl m_{\bar\gamma,\theta_1}$.
Бесплатно
Статья научная
В конце девятнадцатого века Э. Борель естественным образом ввел понятие порядка целой функции, а затем была получена соответствующая формула для вычисления этой величины через коэффициенты тейлоровского разложения данной функции. Позже Дж. Риттом это понятие было распространено и на целые функции, представленные рядами Дирихле с положительными показателями. Им же получена аналогичная формула для этой характеристики (R-порядка), явно зависящая от коэффициентов и показателей ряда Дирихле. В работах А. М. Гайсина этот результат был полностью перенесен на случай полуплоскости, а также для ограниченной выпуклой области. В последнем случае речь идет о рядах Дирихле с комплексными показателями - рядах экспонент. В настоящей статье в терминах порядка по Ритту (R-порядка) изучается связь между ростом ряда Дирихле и коэффициентами разложения. Отдельно рассмотрены случаи, когда ряд сходится равномерно во всей плоскости или лишь в некоторой полуплоскости. В обоих случаях получены необходимые и достаточные условия на показатели, при выполнении которых верны соответствующие формулы, позволяющие вычислить эту величину через коэффициенты ряда. Все ранее известные результаты такого типа носили только достаточный характер. В случае плоскости нами показана точность оценок С. Танаки для R-порядка.
Бесплатно
Тетрация как специальная функция
Статья научная
Голоморфная тетрация (суперэкспонента) по основанию e и ее обратная функция (арктетрация) аппроксимированы элементарными функциями.
Бесплатно
Статья научная
В работах автора было начато изучение особого вида ограниченности решений систем дифференциальных уравнений, а именно, их ограниченности по Пуассону. Понятие ограниченности по Пуассону решения обобщает классическое понятие ограниченности решения и состоит в том, что в фазовом пространстве найдутся такой шар и на временной полуоси такая счетная система непересекающихся интервалов, последовательность правых концов которых стремится к плюс бесконечности, что решение при всех значениях времени из этих интервалов содержится в данном шаре. Далее в работах автора на основе методов функций Ляпунова, вектор-функций Ляпунова и высших производных функций Ляпунова были получены достаточные условия различных видов ограниченности по Пуассону всех решений. В частности, были получены достаточные условия тотальной ограниченности (ограниченности при малых возмущениях) по Пуассону, частичной тотальной ограниченности по Пуассону, а также частичной тотальной ограниченности по Пуассону решений с частично контролируемыми начальными условиями. В настоящей работе автором была получена асимптотическая или, как еще говорят, финальная характеризация понятия ограниченности по Пуассону решения, которая позволила установить связь между понятием ограниченного по Пуассону решения и понятием осциллирующего решения. Далее в работе введены понятия тотальной осциллируемости решений, частичной тотальной осциллируемости решений и частичной тотальной осциллируемости решений с частично контролируемыми начальными условиями. На основе указанной выше финальной характеризации понятия ограниченности по Пуассону решения, а также на основе метода вектор-функций Ляпунова с системами сравнений в работе получены достаточные условия тотальной осциллируемости, частичной тотальной осциллируемости, а также частичной тотальной осциллируемости решений с частично контролируемыми начальными условиями. Как следствия получены достаточные условия указанных выше видов тотальной осциллируемости решений в терминах функций Ляпунова.
Бесплатно
Точные решения урaвнений термоупругости
Статья научная
Метод голоморфных рaзложений применяется к линейной связaнной системе урaвнений термоупругости. Получены и исследованы явные решения в виде рядов функций трех комплексных переменных, а также решения, получающиеся в результате вырождения упомянутых рядов в конечные суммы.
Бесплатно
Трансвекции в надгруппах нерасщепимого тора
Статья научная
В работе исследуются промежуточные подгруппы полной линейной группы GL(n,k) степени n над произвольным полем k, содержащие нерасщепимый максимальный тор, связанный с расширением степени n основного поля k. Доказывается, что если надгруппа нерасщепимого максимального тора содержит одномерное преобразование, то она содержит элементарные трансвекции по крайней мере в двух позициях любой строки и любого столбца.
Бесплатно
Статья научная
Краткое обсуждение изопериметрических задач с ограничениями включения, Парето-оптимальности в теории наилучшего приближения и проблемы описания нестандартных топосов.
Бесплатно
Три теоремы о матрицах Вандермонда
Статья научная
Рассматриваются алгебраические вопросы, связанные с дискретным преобразованием Фурье, определенным при помощи симметричной матрицы Вандермонда Λ. Основное внимание в первых двух теоремах уделяется выработке формулировок, независящих от размера N×N матрицы Λ и явных формул для элементов матрицы Λ через корни уравнения λN=1. В третьей теореме рассматриваются рациональные функции f(λ), λ∈C, удовлетворяющие условию "вещественности" f(λ)=f(1λ) на всей комплексной плоскости и связанные с известной задачей о коммутировании симметричных матриц Вандермонда Λ с (симметричными) трехдиагональными матрицами T. Показано, что уже несколько первых уравнений коммутирования и указанное выше условие вещественности определяют вид рассматриваемых рациональных функций f(λ), а найденные уравнения для элементов трехдиагональных матриц T не зависят от порядка N коммутирующих матриц. Полученные уравнения и приведенные примеры позволяют высказать гипотезу о том, что рассматриваемые рациональные функции являются обобщением многочленов Чебышева. В определенном смысле аналогичная гипотеза была высказана в недавно опубликованной в журнале "Теоретическая и математическая физика" работе В. М. Бухштабера с соавторами, где обсуждаются приложения этих обобщений в современной математической физике.
Бесплатно
Трихотомия решений эллиптических уравнений второго порядка с убывающим потенциалом на плоскости
Статья научная
В двумерной области Q, внешней по отношению к кругу, рассматривается равномерно эллиптическое уравнение второго порядка в дивергентной форме с измеримыми коэффициентами, содержащее младший неотрицательный коэффициент q(x)=q(x1,x2) типа потенциала в стационарном уравнении Шрёдингера. Изучаются обобщенные решения, принадлежащие пространству С. Л. Соболева W12 в любой ограниченной подобласти. Рассматривается вопрос о возможном росте решений на бесконечности. Доказано, что при достаточно быстром убывании младшего коэффициента q(x) на бесконечности существует положительное решение, растущее как логарифм модуля радиус-вектора точки, т. е. так же, как фундаментальное решение соответствующего эллиптического оператора без младшего члена. Построенное решение обладает равномерно ограниченным "потоком тепла" через окружности произвольного радиуса R, концентрические с границей области Q. Далее устанавливается, что для любого решения, удовлетворяющего некоторой степенной оценке роста на бесконечности, выполнена оценка интеграла Дирихле типа принципа Сен-Венана в теории упругости...
Бесплатно