Статьи журнала - Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование

Все статьи: 785

Математическое моделирование слепого разделения двух вещественных сигналов с использованием кумулянтов четвертого порядка

Математическое моделирование слепого разделения двух вещественных сигналов с использованием кумулянтов четвертого порядка

Либеровский Никита Юрьевич, Чиров Денис Сергеевич, Припутин Владимир Сергеевич

Статья научная

В настоящее время методы слепого разделения сигналов используются в различных областях деятельности человека, в том числе в системах беспроводной связи, радиолокации и пеленгации. В статье представлены оригинальный метод и математическая модель слепого разделения двух вещественных радиосигналов. Слепое разделение сигналов подразумевает, что никакой информации о радиосигнале, кроме принимаемых отсчетов, нет. Решение поставленной задачи основано на двух фундаментальных предположениях, выполняемых в реальных условиях. Первое предположение состоит в том, что наблюдаемый сигнал линейно зависит от сигнала источников. Второе предположение заключается в том, что источники радиосигналов являются статистически независимыми. Общую структуру методов слепого разделения сигналов можно представить в виде комбинации контрастной функции и метода ее оптимизации. В ранее известных способах решение этой задачи слепого разделения сигналов осуществляется итерационными методами. В качестве критерия разделения радиосигналов выбрано приведение кумулянтов второго и четвертого порядков выходных сигналов к нулю. Предложенное аналитическое решение позволяет находить размешивающую матрицу W для любых независимых сигналов s1 и s2, кроме тех, у которых кумулянты четвертого порядка равны нулю. Для таких величин разработанный метод позволяет только привести их смесь к двум некоррелированным сигналам. В отличие от существующих итерационных методов, предложенный метод слепого разделения сигналов обеспечивает гарантированную сходимость задачи в заданных ограничениях. Для проверки работоспособности метода создана модель смешивания и разделения сигналов, эффективность которой оценена при различных мощностях собственных шумов в каналах приема. В результате моделирования построена зависимость уровня разделения сигналов от мощности собственных шумов. Продемонстрирована работоспособность метода при отношении шумов входных сигналов к мощности полезных сигналов менее 0,2 дБ.

Бесплатно

Математическое моделирование спектральной задачи об электрических колебаниях в протяженной линии методом регуляризованных следов

Математическое моделирование спектральной задачи об электрических колебаниях в протяженной линии методом регуляризованных следов

Какушкин Сергей Николаевич

Краткое сообщение

Работа посвящена описанию нового численного метода вычисления значений собственных функций возмущенных самосопряженных операторов, основанного на методе регуляризованных следов. Построена математическая модель вычисления значений собственных функций спектральной задачи об электрических колебаниях в протяженной линии. Разработанные алгоритмы позволяют вычислять значения собственной функции возмущенного оператора незавсимо от того, известны предыдущие значения собственных функции или нет. Получены оценки остатков сумм функциональных рядов взвешенных поправок теории возмущений возмущенных самосопряженных операторов, и доказана их сходимость. Для вычислительной реализации метода найдены эффективные алгоритмы нахождения поправок теории возмущений. Проведенные численные эксперименты вычисления значений собственных функций задачи об электрических колебаниях в протяженной линии показывают, что метод хорошо согласуется с другими известными методами А.Н. Крылова и А.М. Данилевского. Метод регуляризованных следов показал свою надежность и высокую эффективность.

Бесплатно

Математическое моделирование тепловой составляющей уравнения состояния молекулярных кристаллов

Математическое моделирование тепловой составляющей уравнения состояния молекулярных кристаллов

Ковалев Юрий Михайлович

Статья научная

Данная работа посвящена построению математической модели уравнения состояния молекулярных кристаллов. Ее практическая ценность заключается в том, что все твердые взрывчатые вещества являются молекулярными кристаллами. Следовательно, разработав математическую модель уравнения состояния молекулярного кристалла, можно будет прогнозировать поведение твердых взрывчатых веществ при высоких давлениях и температурах. Сложность построения уравнения состояния молекулярного кристалла состоит в том, что большое число степеней свободы молекул, входящих в состав кристалла, не позволяет проведение прямых вычислений. В данной работе был предложен подход, который позволил использовать все лучшее, что есть в моделях Дебая и Эйнштейна для описания термодинамики кристаллов. Разделение частот нормальных колебаний в кристалле на высокочастотные и низкочастотные ( деформационные) колебания позволило получить аналитическое выражение для коэффициента Грюнайзена и параметры для тепловой составляющей уравнения состояния молекулярного кристалла.

Бесплатно

Математическое моделирование формирования разности потенциалов при кристаллизации облачных капель с учетом фрактальности среды

Математическое моделирование формирования разности потенциалов при кристаллизации облачных капель с учетом фрактальности среды

Кумыков Тембулат Сарабиевич

Статья научная

В работе рассмотрен механизм возникновения разности потенциалов при кристаллизации облачных капель в конвективных облаках с учетом фрактальной структуры среды. Моделирование процесса проводилось на основе дифференциального уравнения в частных производных дробного порядка. Показано, что возникновение разности потенциалов при кристаллизации капель в конвективных облаках существенно зависит не только от скорости роста льда и дисперсности пузырьков, но и от фрактальности среды, где протекает процесс. Приведены результаты моделирования, на основе численного решения построены графики в зависимости от различных значений управляющих параметров.

Бесплатно

Математическое моделирование электрических полей в электрофизических установках

Математическое моделирование электрических полей в электрофизических установках

Байдин Григорий Васильевич, Куропатенко Валентин Федорович, Лупанов Илья Викторович

Статья научная

В математическом моделировании непрерывные функции заменяются табличными, а дифференциальные уравнения аппроксимируются разностными уравнениями. Необходимость одинакового ограничения погрешности аппроксимации во всей области отыскания решения требует измельчения шагов сетки в областях с большими значениями производных. Кроме того, в области отыскания решения могут находиться разномасштабные важные детали, что приводит к необходимости использования неоднородных сеток с сильно различающимися размерами сеточных ячеек. В данной работе исследуются решения задачи электростатики, получаемые по оригинальной разностной схеме на адаптивных сетках. Особое внимание обращается на поведение погрешности аппроксимации при переходе от равномерной сетки к неравномерной.

Бесплатно

Математическое моделирование электрического поля катодно-поляризуемого трубопровода с учетом внешнего и внутреннего изоляционного покрытия

Математическое моделирование электрического поля катодно-поляризуемого трубопровода с учетом внешнего и внутреннего изоляционного покрытия

Кризский Владимир Николаевич, Александров Павел Николаевич, Косарев Олег Валерьевич, Лунтовская Яна Алексеевна

Статья научная

Формирование математических моделей для корректного расчета параметров систем катодной защиты с целью защиты трубопровода от образования коррозии на металле труб является актуальной задачей. Однако далеко не все модели учитывают необходимые факторы, оказывающие влияние на достоверность рассчитываемых показателей, на основании которых проводится анализ и принятие соответствующих решений о дальнейшей эксплуатации трубопровода. Авторами статьи рассмотрена задача расчета электрических параметров системы катодной защиты подземного трубопровода, находящегося в однородном полупространстве, с учетом переходного сопротивления внешнего и внутреннего покрытия изоляции.

Бесплатно

Математическое моделирование эредитарного осциллятора Эйри с трением

Математическое моделирование эредитарного осциллятора Эйри с трением

Паровик Роман Иванович

Статья научная

Работа посвящена вопросам математического моделирования эредитарных колебательных систем с помощью математического аппарата дробного исчисления на примере осциллятора Эйри с трением. Модельное уравнение Эйри было записано в терминах дробных производных Герасимова - Капуто. Далее для этого обобщенного уравнения предложена конечно-разностная схема для численного счета. Рассмотрены вопросы аппроксимации, устойчивости и сходимости такой численной схемы. Приведены результаты моделирования, на основе численного решения построены осциллограммы и фазовые траектории в зависимости от различных значений управляющих параметров.

Бесплатно

Математическое моделирование эффективных упругих параметров

Математическое моделирование эффективных упругих параметров

Александров Павел Николаевич, Кризский Владимир Николаевич

Статья научная

Статья посвящена исследованию закономерностей распространения упругого поля в неоднородных анизотропных средах. При этом анизотропия вводится как эффективные (усредненные) параметры тонкослоистой среды, что определяет макроанизотропные упругие параметры горной породы. Показано, что эффективные упругие параметры, полученные из теории упругости (уравнений Ламе), не совпадают с эффективными параметрами, полученными с использованием кинематического подхода. На основе сведения уравнений теории упругости к системам обыкновенных дифференциальных уравнений первого порядка получено решение прямой задачи сейсморазведки (как краевой задачи) для горизонтально-слоистой и анизотропной модели геологической среды. Приведенный результат расчета сейсмического поля, зарегистрированного на дневной поверхности, в случае наличия анизотропного объекта приводит к сложной картине волнового поля. Это означает, что необходимо совершенствовать методики сейсморазведки при изучении анизотропных свойств геологической среды.

Бесплатно

Международное сотрудничество

Международное сотрудничество

Келлер А.В., Свиридюк Г.А.

Другой

Бесплатно

Метод С. К. Годунова для многоскоростной модели гетерогенной среды

Метод С. К. Годунова для многоскоростной модели гетерогенной среды

Суров Виктор Сергеевич, Березанский Иван Владимирович

Статья научная

В настоящей работе используется гиперболическая модель, в которой введено в рассмотрение такое состояние среды как смесь в целом, характеризуемая осредненными значениями величин, уравнения для которых совпадают с газодинамическими. К этим соотношениям добавляются уравнения, выражающие законы сохранения, но только для тех компонентов смеси, в которых локальные скорости перемещения возмущений не превышают скорость движения волны в смеси в целом. При этом считалось, что остальные волны поглощаются средой, формируя волну в смеси. Поскольку система уравнений модели не является полностью дивергентной, применение оригинального метода С.К. Годунова для интегрирования уравнений многоскоростной гетерогенной среды невозможно. В представленной работе описан модифицированный МГ, предназначенный для интегрирования недивергентной системы уравнений, описывающей течение многоскоростной гетерогенной смеси. При расчете задач Римана использован линеаризованный римановский решатель.

Бесплатно

Метод декомпозиции в задаче оптимального управления для полулинейных моделей соболевского типа

Метод декомпозиции в задаче оптимального управления для полулинейных моделей соболевского типа

Манакова Наталья Александровна

Краткое сообщение

В связи с большим количеством приложений на первый план выходит вопрос о численном решении задач оптимального управления. В случае нелинейного уравнения состояния поиск численного решения задачи оптимального управления значительно затрудняется. Одним из подходов к решению данной проблемы является метод декомпозиции. Этот метод позволяет линеаризовать исходное уравнение и весь феномен нелинейности перенести на функционал качества, что в значительной степени позволяет упростить численную схему нахождения приближенного решения задачи оптимального управления. В статье рассмотрен метод декомпозиции для задачи оптимального управления решениями полулинейной модели соболевского типа.

Бесплатно

Метод динамического программирования в минимаксной задаче распределения заданий с равноценными исполнителями

Метод динамического программирования в минимаксной задаче распределения заданий с равноценными исполнителями

Иванко Евгений Евгеньевич

Статья научная

В работе рассмотрен ряд специфических вариантов метода динамического программирования, используемых для решения минимаксной задачи распределения заданий при условии, что исполнители равноценны, и их порядок не важен. Для разработанных рекурсивных схем метода динамического программирования показана корректность, проводится сравнение вычислительной трудоемкости классической и предложенных схем. Демонстрируется, что использование специфики условия равноценности исполнителей позволяет сократить количество операций в рассмотренном методе динамического программирования по сравнению с классическим более чем в 4 раза, при этом при увеличении размерности исходной задачи относительный выигрыш лишь увеличивается. Одна из использованных техник сокращения вычислений - > динамическое программирование - по-видимому является общей для целого класса задач, допускающих использование при решении принципа Беллмана. Применение данной техники связано с неполным расчетом значений функции Беллмана в задаче, обладающей некоторой внутренней симметрией, после чего решение исходной задачи получается склеиванием полученных массивов значений функции Беллмана.

Бесплатно

Метод интегральных уравнений построения функции Грина

Метод интегральных уравнений построения функции Грина

Асфандиярова Юлия Сагитовна, Заляпин Владимир Ильич, Харитонова Елена Владимировна

Статья научная

Рассмотрен линейный дифференциальный оператор и система краевых условий, задаваемая линеными в пространстве n раз непрерывно дифференцируемых функций линейно-независимыми функционалами. Функция Грина для краевой задачи, определенной этим оператором и упомянутыми функционалами, строится как решение интегрального уравнения Фредгольма II рода, параметры которого определяются функцией Грина вспомогательной задачи. Полученная таким образом функция Грина дает возможность эффективно решить как прямую (т.е. задачу нахождения решения), так и обратную (т.е. задачу нахождения правой части уравнения по экспериментально полученному решению) задачи. Предложен и апробирован алгоритм численного решения краевой задачи и задачи обращения дифференциального оператора на базе предложенного метода построения функции Грина.

Бесплатно

Метод исследования диссипативных свойств разностных схем в эйлеровых координатах

Метод исследования диссипативных свойств разностных схем в эйлеровых координатах

Шестаковская Елена Сергеевна, Стариков Ярослав Евгеньевич, Клиначева Наталия Леонидовна

Краткое сообщение

В настоящее время численные методы расчета ударно-волновых течений жидкости и газа в эйлеровых координатах получили широкое распространение, поэтому исследование их характеристик является актуальной задачей. В работе представлен подход к оценке диссипативных свойств таких разностных схем на сильных разрывах. Идея метода заключается в построении уравнения производства энтропии, погрешность аппроксимации которого может быть выражена комбинацией погрешностей аппроксимации уравнений, составляющих разностную схему. В качестве критерия диссипативности разностной схемы используется уравнение производства энтропии на слабой ударной волне. В работе проведена оценка диссипативных свойств метода крупных частиц с использованием предложенного метода.

Бесплатно

Метод касательного управления системой «хищник-жертва»

Метод касательного управления системой «хищник-жертва»

Кириллов А.Н., Иванова А.С.

Статья научная

Исследуемая модель представляет собой систему трех обыкновенных дифференциальных уравнений, два из которых - система Лотки - Вольтерра с изъятием особей популяции хищников, одно - дифференциальное уравнение относительно пищевой привлекательности участка. Решается задача сохранения видового состава биосообщества участка за счет изъятия особей популяции хищников. Доказано существование кривой, разделяющей множество, соответствующее всевозможным значениям начальных численностей популяций, на два: точками одного необходимо управлять для предотвращения миграции хищников, для точек другого множества управление не требуется. Проведено аналитическое и численное исследование кривой. Предложен метод касательного управления, позволяющий сохранить видовую структуру биосообщества участка. Построены процессы управления, соответствующие предложенному методу, из которых с помощью численного моделирования найден оптимальный, в смысле минимизации вмешательства в естественные процессы биосообщества и затрат на его реализацию.

Бесплатно

Метод матричных пучков для оценки параметров векторных процессов

Метод матричных пучков для оценки параметров векторных процессов

Генри Манус Патрик, Ибряева Ольга Леонидовна, Салов Данил Дмитриевич, Семенов Александр Сергеевич

Статья научная

В работе рассматривается один из современных параметрических методов обработки сигналов - метод матричных пучков (ММП). Метод позволяет по отсчетам сигнала, представляющего собой сумму комплексных экспонент, эффективно оценивать его параметры. Число экспонент не предполагается известным заранее и также может быть оценено с помощью сингулярного разложения матрицы, составленной из отсчетов сигнала. Объектом исследования данной работы служит векторный процесс - набор сигналов, имеющих одинаковые частоты и коэффициенты затухания (т.е. одинаковые полюсы сигнала), но, вообще говоря, различные комплексные амплитуды. Сигналы такого вида возникают, например, при рассмотрении фазированной антенной решетки, когда необходимо оценить параметры сигнала, генерируемого одними и теми же источниками, но приходящими от многих антенных элементов со своими амплитудами и фазами. Подобная задача возникает и при оценке параметров сигналов с двух пространственно-распределенных датчиков движения кориолисового расходомера. При обработке набора сигналов классическим ММП мы получаем наборы различных полюсов этих сигналов, которые далее приходится, например, усреднять, чтобы получить искомые значения полюсов, предполагаемых одинаковыми для этих сигналов. Предложенная в работе модификация ММП работает со всеми сигналами сразу, давая один набор полюсов сигнала, и при этом оказывается эффективнее и по быстродействию, и по точности определения параметров сигналов. В работе приведены алгоритмы классического ММП и его модификации для векторного процесса, а также численные эксперименты с модельными и реальными сигналами, снятыми с одного из серийно выпускаемых кориолисовых расходомеров Ду15. Эксперименты показывают, что предложенный алгоритм дает более точные результаты за меньшее (примерно в 1,5 раза) время, нежели классический метод матричных пучков.

Бесплатно

Метод негладких интегральных направляющих функций в задаче о существовании периодических решений включений с каузальными операторами

Метод негладких интегральных направляющих функций в задаче о существовании периодических решений включений с каузальными операторами

Корнев Сергей Викторович

Статья научная

Как известно, дифференциальные включения являются очень удобным математическим аппаратом, моделирующим нелинейные управляемые системы с обратной связью, системы автоматического регулирования, системы с разрывными и импульсными характеристиками и другие объекты современной инженерии, механики, физики. В настоящей работе предлагаются новые методы решения задачи о периодических колебаниях управляемых объектов, описываемых дифференциальным включением с каузальным оператором. Впервые дифференциальные уравнения с каузальным оператором, или уравнения типа Вольтерра, были рассмотрены Л. Тонелли и А.Н. Тихоновым. А.Н. Тихонов использовал их в качестве модели при изучении ряда задач теплопроводности, в частности, задачи об остывании тела при лучеиспускании с поверхности. В первой части работы предполагается, что правая часть включения является многозначным отображением, имеющим выпуклые замкнутые значения. Далее предполагается, что правая часть включения невыпуклозначна и полунепрерывна снизу. В силу специфики рассматриваемого объекта в качестве основного инструмента исследования рассматриваемой задачи в обоих случаях используется модифицированный метод классической направляющей функции. А именно, метод негладкой интегральной направляющей функции. Применение теории топологической степени и указанного метода позволяет установить разрешимость периодической задачи в каждом из рассматриваемых случаев.

Бесплатно

Метод функций Грина в задаче о преобразовании случайного сигнала линейной динамической системой

Метод функций Грина в задаче о преобразовании случайного сигнала линейной динамической системой

Хацкевич Владимир Львович, Махинова Ольга Алексеевна

Краткое сообщение

Рассматривается динамическая система, описываемая линейным дифференциальным уравнением высокого порядка с постоянными коэффициентами. Методом функций Грина установлена зависимость между числовыми характеристиками случайного сигнала на входе и выходе динамической системы, а именно между математическими ожиданиями и между корреляционными функциями. В отличие от известных результатов, не предполагается стационарность входного и выходного случайных сигналов.

Бесплатно

Методы исследования устойчивости и стабилизации некоторых систем с большим запаздыванием

Методы исследования устойчивости и стабилизации некоторых систем с большим запаздыванием

Гребенщиков Борис Георгиевич, Ложников Андрей Борисович

Краткое сообщение

Статья посвящена исследованию свойств систем дифференциальных уравнений, содержащих большое (в частности, линейное) запаздывание. Системы с линейным запаздыванием имеют достаточно широкое применение в биологии, в частности, при моделировании распределения клеток в ткани организма; а также в теории нейронных сетей. Уравнения подобного типа встречаются также в задачах физики и механики, где важным моментом является асимптотическое поведение решения (в частности, асимптотическая устойчивость). При неустойчивости таких систем возникает задача стабилизации. Оптимальный алгоритм стабилизации основан на совокупности стабилизации систем обыкновенных дифференциальных уравнений и в дальнейшем разностных систем. Данный алгоритм достаточно просто реализуется с использованием численных методов решения систем дифференциальных уравнений с запаздыванием и решения матричных уравнений. Авторами составлена программа, позволяющая достаточно эффективно находить управляющее воздействие, осуществляющее стабилизацию некоторых систем.

Бесплатно

Методы организации грид-оболочек системного слоя в технологии CAEBeans

Методы организации грид-оболочек системного слоя в технологии CAEBeans

Радченко Г.И.

Статья научная

Представлена технология построения иерархии проблемно-ориентированных грид-оболочек CAEBeans над инженерными пакетами. Дано описание структурной организации оболочек CAEBeans в виде четырех слоев: концептуального, логического, физического, системного. Рассмотрены методы организации оболочек CAEBeans системного слоя. Работа проводилась при финансовой поддержке Федерального агентства по науке и инновациям (грант 2007-4-14-20-01-026), программы СКИФ-ГРИД (грант СГ-1/07) и Фонда содействия развитию малых форм предприятий в научно-технической сфере (грант 7434).

Бесплатно

Журнал