Статьи журнала - Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование

Все статьи: 767

О модельных движениях в задаче управления при функциональных ограничениях на помеху

О модельных движениях в задаче управления при функциональных ограничениях на помеху

Серков Дмитрий Александрович

Статья научная

Рассматривается задача управления системой, описываемой обыкновенным дифференциальным уравнением. Предполагается, что значения управления и помехи в каждый момент времени содержатся в некоторых компактных множествах. Предполагается также, что помехи удовлетворяют некоторым дополнительным ограничениям функционального характера, отражающим природу рассматриваемой задачи. Качество управления оценивается функционалом, заданым на множестве фазовых траекторий рассматриваемой системы, и непрерывным в метрике равномерной сходимости. Ранее установлено, что стратегия с полной памятью разрешает данную задачу управления при компактных ограничениях на помеху и при других функциональных ограничениях, которые к ним сводятся. Вместе с тем, построенные для этих случаев стратегии не являлись универсальными, то есть они зависели от начальной позиции движения системы. Также оставался открытым вопрос о возможности разрешения задач управления с функциональными ограничениями в более узком (классическом) множестве стратегий - позиционных стратегий. В данной статье приводится конструкция оптимальной стратегии, использующая в цепи обратной связи вспомогательную модель управляемой системы и обладающая свойством универсальности. Даны примеры, мотивирующие расширение класса разрешающих стратегий до стратегий с полной памятью.

Бесплатно

О направлениях исследований уравнений соболевского типа

О направлениях исследований уравнений соболевского типа

Келлер А.В.

Статья обзорная

Статья представляет собой краткий обзор результатов аналитических исследований классов задач для уравнений соболевского типа, полученных научным коллективом в Южно-Уральском государственном университете. В обзор включен ряд результатов по следующем направлениям: исследование разрешимости начальных задач для линейных, полилинейных уравнений соболевского типа и получение условий их устойчивости; исследование разрешимости классов задач для уравнений соболевского типа высокого порядка; исследование разрешимости и единственности начально-конечных задач и задач оптимального управления для уравнений соболевского типа; создание и развитие теории стохастических уравнений соболевского типа; исследование разрешимости задач для уравнений соболевского типа в пространстве К-форм. Получение всех этих результатов базируется на успешном использовании метода фазового пространства и теории вырожденных разрешающих (полу)групп, разработанными профессором Г.А. Свиридюком и развиваемыми его учениками, работающими в университетах нашей страны. Уравнения соболевского типа лежат в основе различных физических, биологических, экономических и других моделей. Краткое изложение совокупности результатов крупного направления современных исследований позволит получить не только актуальное системное представление о нем, но и о дальнейшем его развитии. Статья содержит пять разделов, в библиографию обзора вошли как работы, ставшие базисными для многих последующих результатов, прежде всего численных исследований, так и работы последних лет, которые расширили границы методов теории уравнений соболевского типа.

Бесплатно

О научной и педагогической деятельности профессора А.И. Кибзуна

О научной и педагогической деятельности профессора А.И. Кибзуна

Новиков Д.А., Свиридюк Г.А.

Персоналии

Бесплатно

О некоторых обратных задачах для математических моделей тепломассопереноса

О некоторых обратных задачах для математических моделей тепломассопереноса

Пятков Сергей Григорьевич, Боричевская Альбина Генадьевна

Статья научная

В настоящей работе рассмотрены вопросы корректности некоторых обратных задач для математических моделей, возникающих при описании процессов тепломассопереноса. По данным первой начально-краевой задачи и условию Неймана на боковой поверхности цилиндра (таким образом, на боковой поверхности цилиндра заданы данные Коши) восстанавливаются решение параболического уравнения второго порядка и коэффициент этого уравнения, принадлежащий ядру некоторого дифференциального уравнения первого порядка и характеризующий параметры среды. Неизвестный коэффициент может в том числе входить и в главную часть дифференциального оператора. Решение уравнения ищется в пространствах Соболева с достаточно большим показателем суммируемости, а неизвестный коэффициент в классе непрерывных функций. Показано, что локально по времени задача имеет единственное устойчивое решение.

Бесплатно

О некоторых соотношениях в теории вырожденных полугрупп операторов

О некоторых соотношениях в теории вырожденных полугрупп операторов

Федоров В.Е.

Статья научная

В теории вырожденных полугрупп операторов существенную роль играют понятия (L, p)-радиального и сильно (L, p)-радиального операторов. В данной работе показано, что в определенных ситуациях каждое из них подразумевает обобщение на случай вырожденных сильно непрерывных полугрупп условий Хилле-Иосиды на инфинитезимальный генератор (С0)-непрерывной полугруппы операторов. Кроме того, получены достаточные условия эквивалентности этих понятий. Аналогичные результаты получены и для (L, p)-секториальных и сильно (L, p)-секториальных операторов в случае вырожденных сильно голоморфных полугрупп. Работа проводилась при финансовой поддержке РФФИ, грант № 07-01-96030-р_урал_а.

Бесплатно

О неустойчивости решений эволюционных уравнений соболевского типа на графе

О неустойчивости решений эволюционных уравнений соболевского типа на графе

Пивоварова П.О.

Статья научная

Исследована устойчивость и разрешимость задачи Коши для уравнений λujt - ujtxx = βujxx - αujxxxx + γuj,, заданных на конечном связном и ориентированном графе с условиями непрерывности и баланса потока в его вершинах.

Бесплатно

О разрешимости обратной задачи нахождения старшего коэффициента в уравнении составного типа

О разрешимости обратной задачи нахождения старшего коэффициента в уравнении составного типа

Кожанов А.И.

Статья научная

Для уравнений составного типа, называемых также псевдопараболическими уравнениями, исследуется разрешимость обратной задачи нахождения вместе с решением неизвестного коэффициента, зависящего от выделенной временной переменной. В качестве дополнительного условия предлагается условие интегрального переопределения. Доказываются теоремы существования и единственности регулярных решений. Работа выполнена при поддержке Российского фонда фундаментальных исследований, код проекта N 06-01-00439, и Сибирского отделения РАН, интеграционный проект N 48.

Бесплатно

О разрушении решения нелокального уравнения с градиентной нелинейностью

О разрушении решения нелокального уравнения с градиентной нелинейностью

Корпусов Максим Олегович

Статья научная

В данной работе мы продолжим рассмотрение уравнений с градиентными нелинейностями. Мы рассмотрим начально-краевую задачу в ограниченной области с гладкой границей для нелокального по времени уравнения с градиентной нелинейностью и докажем локальную разрешимость в сильном обобщенном смысле, кроме того, мы получим достаточные условия разрушения за конечное время и достаточные условия глобальной во времени разрешимости.

Бесплатно

О распространении слабых сигналов в сплошных средах

О распространении слабых сигналов в сплошных средах

Куропатенко Валентин Федорович

Статья научная

Рассматривается метод определения скорости распространения слабых сигналов в различных средах - идеальных, неидеальных (с отличным от нуля девиатором напряжений) и многокомпонентных. Что касается идеальных сред, то формула Лапласа для скорости звука C 2=(dP/dp) s настолько широко применяется во всем мире в течение длительного времени, что она воспринимается как определение скорости звука. В работе показано, что эта формула является не определением, а следствием рассмотрения законов сохранения массы импульса и энергии в случае малых возмущений в среде с произвольным уравнением состояния. Точно такое же рассмотрение в случае упругой изотропной среды позволяет выразить скорости распространения продольных и поперечных малых возмущений через свойства твердого тела. Эти зависимости достаточно хорошо изучены в теории упругости, хотя иногда встречаются работы по механике сплошных сред, содержащие несколько иные, чем общепринятые, связи скоростей продольных и поперечных возмущений с гидродинамической скоростью звука. Их обсуждение в данной статье вызвано необходимостью продемонстрировать общность применяемого метода. Наконец, в случае многокомпонентных сред метод приводит к уравнению для скорости звука смеси, принципиально отличному от широко применяемого. В работе дается обоснование нового уравнения, выражающего скорость звука смеси через скорости звука и концентрации компонентов.

Бесплатно

О решении краевых задач для вырожденных систем линейных интегро-дифференциальных уравнений методом наименьших квадратов

О решении краевых задач для вырожденных систем линейных интегро-дифференциальных уравнений методом наименьших квадратов

Нгуен Банг Дык, Чистяков Виктор Филимонович

Статья научная

В настоящее время, при анализе сложных электрических и электронных схем, часто встречаются системы, включающие в себя взаимосвязанные дифференциальные, интегральные и алгебраические уравнения. Алгебраические уравнения отвечают за отличие в моделях балансовых соотношений, в частности, законов сохранения или уравнений состояния, системы дифференциальных уравнений описывают динамику процесса. Если процесс обладает последействием, то математическая модель может включать и интегральные уравнения (ИУ). Системы взаимосвязанных дифференциальных, алгебраических и интегральных уравнений можно записать в виде векторных интегро-дифференциальных уравнений с матрицей неполного ранга в области определения при старшей производной искомой вектор-функции. Численное решение краевых и начальных задач для таких систем сопряжено с большими трудностями. В данной работе обсуждается метод наименьших квадратов и приведены результаты численных расчетов.

Бесплатно

О решении одной обратной задачи, моделирующей двумерное движение вязкой жидкости

О решении одной обратной задачи, моделирующей двумерное движение вязкой жидкости

Андреев Виктор Константинович

Статья научная

Рассматривается обратная начально-краевая задача для линейного параболического уравнения, которая возникает при математическом моделировании двумерных ползущих движений вязкой жидкости в плоском канале. Неизвестная функция времени входит в правую часть уравнения аддитивно и находится из дополнительного условия интегрального переопределения. Поставленная задача имеет два разных интегральных тождества, которые позволяют получить априорные оценки решения в равномерной метрике и доказать теорему единственности. При некоторых ограничениях на входные данные решение построено в виде ряда по специальному базису. Для этого задача путем дифференцирования по пространственной переменной сводится к прямой неклассической задаче с двумя интегральными условиями вместо обычных краевых. Новая задача решается методом разделения переменных, позволяющим найти неизвестные функции в виде быстро сходящихся рядов. Другой, стандартный, метод решения исходной задачи состоит в сведении ее к нагруженному уравнению и первой начально-краевой задаче для него. В свою очередь, эта задача сведена к одномерному по времени операторному уравнению Вольтерры со специальным ядром. Доказано, что оно имеет решение в виде ряда. Установлены некоторые вспомогательные формулы, полезные при численном решении этого уравнения методом преобразования Лапласа. Установлены достаточные условия, при которых решение с ростом времени выходит на стационарный режим по экспоненциальному закону.

Бесплатно

О решениях максимального порядка малости нелинейных уравнений в секториальной окрестности нуля

О решениях максимального порядка малости нелинейных уравнений в секториальной окрестности нуля

Леонтьев Роман Юрьевич

Статья научная

Рассматривается нелинейное уравнение B(\)x = R(x, X)+b(X), причем R(0,0) = 0, b(0) = 0. Оператор В(λ) не является непрерывно обратимым при А = 0, однако имеет ограниченный обратный при λ Є S, где 5 - некоторое множество, именуемое секториальной окрестностью нуля. Исследуются вопросы существования малых непрерывных решений х(λ) → 0 при S Э λ → 0. Доказаные теоремы предоставляют конструктивный способ построения решения максимального порядка малости.

Бесплатно

О свойствах решений краевой задачи, моделирующей термокапиллярное течение

О свойствах решений краевой задачи, моделирующей термокапиллярное течение

Андреев Виктор Константинович

Статья научная

Исследуется обратная начально-краевая задача, возникающая при математическом моделировании специальных термокапиллярных двумерных движений жидкости вблизи точки экстремума температуры на твердой стенке. Одна из компонент поля скоростей рассматриваемого движения линейно зависит от продольной координаты, что согласуется с квадратичной зависимостью поля температур от этой же координаты. При малых числах Марангони задача аппроксимируется линейной, решение которой находится в явном виде для стационарного течения. Приведены результаты вычисления нулевого и первого приближения решения обратной стационарной задачи. В нестационарном случае решение определяется в виде квадратур в пространстве изображений по Лапласу. Показано, что если температура на твердой стенке стабилизируется с ростом времени, то решение стремится к найденному стационарному режиму. Приведены численные результаты обращения преобразования Лапласа, подтверждающие теоретические выводы на примере моделирования процесса возникновения термокапиллярного движения из состояния покоя в слое трансформаторного масла. Показано, что, выбирая тот или иной тепловой режим на твердой стенке, можно управлять движением жидкости внутри слоя.

Бесплатно

О семействах решений интегральных уравнений Вольтерры первого рода с разрывными ядрами

О семействах решений интегральных уравнений Вольтерры первого рода с разрывными ядрами

Сидоров Денис Николаевич

Статья научная

Предложен метод построения параметрических семейств непрерывных решений одного класса интегральных уравнений Вольтерры первого рода, возникающих в теории развивающихся систем. Ядра рассматриваемых уравнений допускают разрывы первого рода на монотонно возрастающих кривых. В явном виде построено характеристическое алгебраическое уравнение. Отдельно изучается регулярный случай, когда характеристическое уравнение не имеет натуральных корней и решение интегрального уравнения единственное. В нерегулярном случае характеристическое уравнение имеет натуральные корни, а решение рассматриваемого интегрального уравнения содержит произвольные постоянные. При этом решение может быть неограниченными, если характеристическое уравнение имеет нулевой корень. Показано, что число произвольных постоянных, входящих в решение, зависит от кратности натуральных корней характеристического уравнения. Доказаны теоремы существования параметрических семейств решений и строится их асимптотика с помощью логарифмо-степенных полиномов. Асимптотика может уточняться численно или последовательными приближениями.

Бесплатно

О сильных решениях одной модели термовязкоупругости типа Олдройда

О сильных решениях одной модели термовязкоупругости типа Олдройда

Орлов Владимир Петрович, Паршин Максим Игоревич

Статья научная

Для начально-граничной задачи динамики термовязкоупругой среды типа Олдройда в плоском случае установлена локальная теорема существования сильного решения. Изучаемая сплошная среда является ограниченной областью на плоскости с достаточно гладкой границей. Рассматриваемая система уравнений является обобщением системы Навье-Стокса-Фурье и получается из нее путем добавления в тензор напряжений интегрального слагаемого, отвечающего за память среды. Вначале рассматривается начально-граничная задача для системы вязкоупругости типа Олдройда с переменной вязкостью. Затем рассматривается начально-граничная задача для уравнения сохранения энергии с переменным коэффициентом теплопроводности и интегральной частью. Разрешимость этих задач устанавливается путем сведения к операторным уравнениям, для разрешимости которых применяется принцип сжимающих отображений. Для разрешимости исходной системы термовязкоупругости устраивается итерационный процесс, заключающийся в последовательном решении вспомогательных задач. Подходящие априорные оценки дают сходимость последовательных приближений на достаточно малом временном промежутке. Докозательство существенным образом опирается на результаты L. Consiglieri о разрешимости соответствующей системы Навье - Стокса - Фурье.

Бесплатно

О скорости сходимости стационарного метода Галеркина для уравнения смешанного типа

О скорости сходимости стационарного метода Галеркина для уравнения смешанного типа

Егоров Иван Егорович, Тихонова Ирина Михайловна

Статья научная

В работе изучается краевая задача В.Н. Врагова для уравнения смешанного типа второго порядка, когда уравнение принадлежит эллиптическому типу вблизи оснований цилиндрической области. С помощью стационарного метода Галеркина доказана однозначная регулярная разрешимость краевой задачи при определенных условиях на коэффициенты и правую часть уравнения. При этом установлены априорные оценки для уравнения смешанного типа, которым удовлетворяют приближенные решения. Получена оценка скорости сходимости стационарного метода Галеркина в норме пространства Соболева W 1 2, через собственные функции оператора Лапласа по пространственным переменным и по времени. При выводе оценки скорости сходимости метода Галеркина существенно используется разложение решения исходной краевой задачи в ряд Фурье по собственным функциям оператора Лапласа и известное равенство Парсеваля.

Бесплатно

О сложности стратегии параллельного построения изображении для систем визуализации

О сложности стратегии параллельного построения изображении для систем визуализации

Джосан Оксана Васильевна

Статья научная

В работе рассматриваются различные стратегии параллельного построения изображений и видеопоследовательностей на суперкомпьютерах для систем визуализации научных данных. Анализируется их вычислительная сложность. Приводятся оценки эффективности и масштабируемости стратегии для различных входных параметров задачи. Практическая апробация предложенных методов проведена на суперкомпьютере BlueGene /P.

Бесплатно

О совершенных шифрах на основе ортогональных таблиц

О совершенных шифрах на основе ортогональных таблиц

Рацеев Сергей Михайлович, Череватенко Ольга Ивановна

Статья научная

В работе исследуются совершенные шифры, стойкие к имитации и подмене шифрованных сообщений. Особо выделен случай, когда вероятности имитации и подмены достигают нижних границ. Хорошо известно, что шифр гаммирования с равновероятной гаммой является совершенным, но максимально уязвимым к попыткам имитации и подмены. Это происходит потому, что в шифре гаммирования алфавиты для записи открытых и шифрованных текстов равномощны. Так как одним из недостатков математической модели шифра являются ограничения, накладываемые на мощности множеств открытых текстов и ключей, то сначала приводится математическая модель шифра замены с неограниченным ключом, предложенная А.Ю. Зубовым. На основе данной модели в работе приводятся конструкции совершенных шифров, стойких к имитации и подмене. Данные шифры строятся на основе ортогональных таблиц и латинских прямоугольников. Рассматривается случай, когда случайный генератор ключевых последовательностей не обязательно имеет равномерное распределение вероятностей. Так как длины ключей таких шифров не меньше длин передаваемых сообщений, то шифры замены с неограниченным ключом целесообразно использовать в исключительно важных случаях.

Бесплатно

О современных ортогонализованных алгоритмах оптимальной дискретной фильтрации

О современных ортогонализованных алгоритмах оптимальной дискретной фильтрации

Цыганова Юлия Владимировна, Куликова Мария Вячеславовна

Статья обзорная

В настоящее время вычислительные методы оптимального оценивания стали самостоятельной областью исследования и получили большое развитие. Современные численно эффективные ортогонализованные алгоритмы привлекательны не только своей устойчивостью к ошибкам машинного округления, но и приспособленностью алгоритмов, использующих различные типы матричных ортогональных преобразований, к программной реализации на параллельных или векторных вычислительных системах. Эти свойства позволяют разрабатывать новые эффективные информационные технологии, в частности, при решении задач в режиме реального времени и при обработке больших данных. Статья содержит краткий обзор современных ортогонализованных алгоритмов оптимальной линейной дискретной фильтрации. Рассмотрены четыре класса ортогонализованных алгоритмов: квадратно-корневые ортогонализованные алгоритмы, алгоритмы на основе методов взвешенной ортогонализации, J-ортогонализованные алгоритмы и алгоритмы на базе методов сингулярного разложения. Приведена классификация алгоритмов по типам матричных ортогональных преобразований, на основе которых эти алгоритмы построены. Такая классификация позволяет легче понять метод построения ортогонализованного фильтра и выбрать способ эффективной программной реализации при решении практических задач в классе многомерных дискретных линейных стохастических систем. В работе исследованы вычислительные аспекты ортогонализованных алгоритмов: численная устойчивость к ошибкам машинного округления и способы эффективной программной реализации. Все рассмотренные алгоритмы являются алгебраически эквивалентными стандартной реализации дискретного фильтра Калмана, но существенно превосходят его по своим вычислительным свойствам. Полученные результаты сравнительного исследования позволяют сделать вывод о том, что применение ортогонализованных алгоритмов при решении практических задач помогает получить численно эффективные и надежные решения.

Бесплатно

О существовании и единственности решения обратной задачи спектрального анализа для самосопряженного дискретного оператора

О существовании и единственности решения обратной задачи спектрального анализа для самосопряженного дискретного оператора

Седов А.И.

Статья научная

Приведены достаточные условия налагаемые на последовательность комплексных чисел, для которой существует возмущенный дискретный оператор такой, что его спектр совпадает с данной последовательностью.

Бесплатно

Журнал