Статьи журнала - Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика
Все статьи: 733
О самоорганизации и профилировании кристаллов кварца в условиях неравновесной термодинамики
Статья научная
На примере кварца рассмотрены вопросы, связанные с самоорганизацией и профилированием кристаллов кварца в условиях неравновесной термодинамики.
Бесплатно
О связи достаточных условий регуляризуемости интегральных уравнений
Статья научная
Исследуется одна бесконечная серия достаточных условий регуляризуемости интегральных уравнений. Доказано, что любые два из этих условий не являются эквивалентными, даже если ограничиться уравнениями с гладкими ядрами.
Бесплатно
О слабых решениях нагруженного гиперболического уравнения с однородными краевыми условиями
Статья научная
Рассматривается смешанная задача с однородными краевыми условиями для нагруженного волнового уравнения, содержащего интеграл по пространственной переменной от натуральной степени модуля решения. Вводится определение слабого решения данной задачи, для которого исследуются вопросы существования и единственности. Для доказательства существования решения используется метод компактности, который формально заключается в том, что при доказательстве сходимости приближенного решения, построенного методом Галеркина, существенно используются вполне непрерывные вложения пространств Соболева. Для использования метода необходимы априорные оценки решения задачи, которые частично установлены в предыдущих работах автора и в предлагаемой статье. Вслед за этим строятся приближенные галеркинские решения. Существование приближенных решений доказывается с помощью теоремы существования для обыкновенных дифференциальных уравнений. После этого производится предельный переход, соответствующий устремлению размерности пространства к бесконечности. Здесь возникает основная трудность применения метода, связанная с нелинейностью уравнения и состоящая в доказательстве компактности семейства приближенных решений. Для этого используются теоремы о компактности вложения пространств Соболева заданного порядка в пространства Соболева меньшего порядка. Единственность слабого решения доказывается стандартной процедурой из теории линейных и нелинейных гиперболических уравнений.
Бесплатно
Статья научная
Рассматриваются вопросы однозначной разрешимости смешанной задачи для нелинейного дифференциального уравнения, содержащего суперпозицию параболического и эллиптического операторов в левой части уравнения и отражающего отклонение в правой нелинейной части данного уравнения. С помощью метода разделения переменных задача сводится к изучению счетной системы нелинейных интегральных уравнений, однозначная разрешимость которой доказывается методом последовательных приближений.
Бесплатно
О способах повышения точности расчета ударных волн
Статья научная
Рассматривается неоднородный разностный метод расчета ударных волн в Лагранжевых координатах. Метод позволяет явно выделять в решении ударные волны в виде разрывов первого рода. Предлагаются способы повышения точности расчета выделенных ударных волн в рамках этого метода. В частности, для определения величин перед фронтом ударной волны наряду с разностным подходом предлагается использовать элементы метода характеристик. Приводится алгоритм модифицированного метода. На примере расчета методических задач показано, что применение модифицированного метода позволило повысить монотонность и точность расчета ударных волн.
Бесплатно
Статья научная
Стохастические уравнения леонтьевского типа являются частным случаем стохастических систем дифференциально-алгебраического типа. В работе изучается система, заданная в терминах текущих скоростей (симметрических производных в среднем) решения. Отметим, что по физическому смыслу текущая скорость стохастических процессов являются прямым аналогом физической скорости детерминированных процессов. Предполагается, что матрицы изучаемой системы являются прямоугольными зависящими от времени и удовлетворяют требованиям, при выполнении которых система не разрешима относительно симметрической производной. Для исследования данной системы уравнений мы используем подход, основанный на преобразовании квадратной матрицы к канонической форме Жордана и замене метрики пространства. Доказана теорема существования решений для стохастического уравнения леонтьевского типа в текущих скоростях при выполнении некоторых дополнительных условий на ее матрицы коэффициентов и свободные члены.
Бесплатно
О структуре пространства однородных полиномиальных дифференциальных уравнений на окружности
Статья научная
Рассматриваются дифференциальные уравнения, правые части которых являются однородными тригонометрическими полиномами степени n. Фазовым пространством таких уравнений является окружность. Описаны грубые уравнения - уравнения, для которых топологическая структура фазового портрета не меняется при переходе к близкому уравнению. Уравнение является грубым тогда и только тогда, когда его правая часть имеет только простые нули, то есть все особые точки которого - гиперболические. Множество всех грубых уравнений открыто и всюду плотно в пространстве Eh(n) рассматриваемых уравнений. Описаны связные компоненты этого множества. Два грубых уравнения, имеющие особые точки, принадлежат одной компоненте тогда и только тогда, когда они топологически эквивалентны. Во множестве всех негрубых уравнений выделено открытое и всюду плотное подмножество, состоящее из уравнений первой степени негрубости - уравнений, для которых топологическая структура фазового портрета не меняется при переходе к близкому негрубому уравнению. Оно является аналитическим подмногообразием коразмерности один в Eh(n) (бифуркационным многообразием) и состоит из уравнений, для которых все особые точки гиперболические, за исключением двух седло-узловых особых точек. Доказано, что любые два грубых уравнения можно соединить в Eh(n) гладкой дугой с конечным числом бифуркационных точек, в которых эта дуга трансверсальна бифуркационному многообразию.
Бесплатно
О существовании неподвижной точки у равномерно сжимающего монотонного оператора
Краткое сообщение
Доказывается существование неподвижной точки у монотонного сжимающего отображения в банаховом K пространстве. Доказывается сходимость итераций к неподвижной точке в метрике равномерной сходимости. Компактность инвариантного множества, полная непрерывность оператора не предполагаются.
Бесплатно
О сходимости последовательности операторов внутренней суперпозиции
Статья научная
В теории уравнений с отклоняющимся аргументом нейтрального типа важную роль играет оператор внутренней суперпозиции, действующий в лебеговом пространстве суммируемых функций. В статье рассматривается сходимость последовательности таких операторов. Функции, на которых определены операторы внутренней суперпозиции, заданы на локально компактном пространстве с мерами, определяемыми самими операторами.
Бесплатно
О точном и приближенном решении задачи факторизации Винера-Хопфа для мероморфных матриц-функций
Статья научная
Предложен алгоритм явного решения задачи факторизации Винера-Хопфа для мероморфных в многосвязной области матриц-функций. Для рациональных матриц-функций алгоритм реализован в системе Maple в виде двух пакетов программ, позволяющих вычислять частные индексы и факторизационные множители точно, когда это возможно, или приближенно. Вычислительные эксперименты показали, что, несмотря на неустойчивость задачи, алгоритм позволяет находить приближенное решение с высокой степенью точности. Работа выполнена при поддержке РФФИ-Урал, грант № 07-01-96010.
Бесплатно
О факторизации Винера-Хопфа функционально-коммутативных матрицфункций
Статья научная
Для функционально-коммутативных матриц-функций специального вида предложен алгоритм явного решения задачи факторизации Винера-Хопфа. Используются элементарные факты теории представлений конечных групп. Симметрия факторизуемой матрицы-функции позволяет диагонализовать ее с помощью постоянного линейного преобразования. Тем самым задача приводится к скалярному случаю.
Бесплатно
О числе OE-цепей для заданной системы переходов
Статья научная
Ранее установлено существование ОЕ-цепи в плоском эйлеровом графе и предложен алгоритм построения такой цепи. В статье исследуется вопрос о числе ОЕ-цепей с системой переходов, индуцируемой отдельной ОЕ-цепью и установлено, что верхняя оценка этого числа не превышает удвоенной суммы количества вершин, смежных внешней грани, и суммы степеней разделяющих вершин. Построенная оценка достижима, если система переходов является системой переходов A-цепи. Исследован вопрос существования ОЕ-цепей, удовлетворяющих произвольной системе переходов.
Бесплатно
О явном описании множества предельных точек полюсов аппроксимаций Паде
Статья научная
Пусть a(z) - мероморфная функция, имеющая Я полюсов в круге \z\Известно, что асимптотическое поведение знаменателей аппроксимаций Паде (Я -1) -й строки таблицы Паде для функции а(г) определяется доминирующими полюсами, то есть полюсами максимального модуля, имеющими максимальную кратность. В случае, когда a(z) имеет один или два доминирующих полюса, в работе [1] явно описано множество предельных точек полюсов аппроксимаций Паде для этой строки. В данной работе такое описание получено для случая трех доминирующих полюсов.
Бесплатно
О явном решении краевой задачи типа Неймана для обобщенных аналитических функций в единичном круге
Статья научная
Для качественного исследования краевых задач в тех или иных классах функций комплексного переменного существенное значение имеет проблема разрешимости этих задач в явном виде, т. е. возможности построения общих решений рассматриваемых задач, используя лишь формулы решения классических скалярных краевых задач Римана или Гильберта для аналитических функций, а также решая конечное число систем линейных алгебраических уравнений и/или линейных дифференциальных уравнений, для которых матрица системы может быть выписана в квадратурах. В представленной статье рассматривается на комплексной плоскости одно семейство дифференциальных уравнений с частными производными второго порядка с коэффициентом при искомой функции, зависящим от натурального параметра n, а решения которого принято называть обобщенными аналитическими функциями порядка n. Кроме того, в статье сформулирована общая постановка краевой задачи типа Неймана для обобщенных аналитических функций произвольного порядка n, а также получен явный метод решения поставленной краевой задачи в классе обобщенных аналитических функций первого порядка в случае, когда носителем краевых условий является единичная окружность. Установлено, что в рассматриваемом случае решение задачи типа Неймана для обобщенных аналитических функций первого порядка редуцируется к последовательному решению простейшей скалярной задачи Римана в классе ограниченных на бесконечности кусочно аналитических функций и одного линейного дифференциального уравнения Эйлера второго порядка, т. е. искомая задача в рассматриваемом случае допускает полное описание картины ее разрешимости. Полученные общие результаты иллюстрируются на конкретном примере.
Бесплатно
Об аналоге задачи Трикоми для уравнения третьего порядка смешанного типа
Статья научная
Как известно, уравнениями смешанного типа называются уравнения в частных производных, которые принадлежат разным типам в разных частях рассматриваемой области. Например, в одной части области уравнение может принадлежать эллиптическому, а в другой - гиперболическому типу; эти части разделены линией перехода, на которой уравнение вырождается в параболическое или не определено. В 1923 г. итальянский математик Ф. Трикоми рассмотрел краевую задачу для одного уравнения смешанного эллиптико-гиперболического типа (впоследствии названного его именем) в области, ограниченной в верхней полуплоскости ляпуновской кривой, а в нижней - выходящими из концов этой кривой характеристиками уравнения; краевые условия при этом ставились на кривой и на одной из характеристик. Решение должно было быть непрерывным в замыкании области, непрерывно дифференцируемым внутри нее и дважды непрерывно дифференцируемым в верхней (эллиптической) и нижней (гиперболической) подобластях; для первых производных решения допускались особенности интегрируемого порядка вблизи концов кривой. Ф. Трикоми доказал существование и единственность решения поставленной задачи в указанном классе; при доказательстве существования он свел задачу к сингулярному интегральному уравнению. В данной статье исследован аналог задачи Трикоми для одного смешанного гиперболо-параболического уравнения третьего порядка со спектральным параметром. Доказаны единственность и существование решения поставленной задачи. Единственность решения задачи доказывается методом интегралов энергии, а существование решения - методом редукции к интегральному уравнению Фредгольма второго рода, разрешимость которого вытекает из единственности решения задачи.
Бесплатно
Об аномальной дисперсии звука и структуре жидкости
Статья научная
В работе показано, что исчезновение аномальной дисперсии звука и изменение типа коллективного движения в жидкостях разной природы связано с изменением структуры жидкости. Работа поддержана РФФИ, проекты 06-03-32690, 06-08-01142.
Бесплатно
Об асимптотическом режиме конвекции Рэлея-Бенара
Статья научная
Рассматривается двумерная и нестационарная конвекция вязкой, несжимаемой жидкости в узком вертикальном канале при подогреве снизу. Численным решением получен новый асимптотический режим конвекции с линейной зависимостью чисел Нуссельта и Рейнольдса от числа Рэлея. Полученный асимптотический закон может быть рассмотрен как дополнение к общепринятому корневому закону.
Бесплатно
Об идентификации коэффициента теплообмена в слоистой среде
Статья научная
Рассматривается вопрос о корректности в пространствах Соболева обратных задач об определении коэффициента теплообмена на границе раздела сред, входящего в условие сопряжения типа неидеального контакта. В цилиндрической пространственной области рассматривается параболическое уравнение второго порядка. Область делится на две подобласти, на общей части границы которых задается условие сопряжения. Коэффициент теплообмена, входящий в условие сопряжения, ищется в виде конечного отрезка ряда с неизвестными коэффициентами Фурье, зависящими от времени. Уравнение дополняется краевыми условиями общего вида и начальными условиями, а также условиями переопределения. Условия переопределения - значения решения в некотором наборе точек, лежащих в пространственной области. При естественных условия гладкости на данные и расположение точек замеров показана локальная по времени теорема существования и единственности решений. Полученное решение является регулярным, т. е. все обобщенные производные, входящие в уравнение, суммируемы с некоторой степенью и уравнение выполняется почти всюду. Метод является конструктивным, и на основе предложенного подхода возможно построение численных методов решения задачи. Доказательство основано на получаемых априорных оценках и теореме о неподвижной точке.
Бесплатно
Об использовании тензора логарифмической деформации
Статья научная
Отказ от гипотезы малости перемещений в механике деформируемого тела приводит к проблемам, связанным с геометрической нелинейностью, которые до сих пор не решены до конца, несмотря на свою актуальность для практических приложений. Одна из таких проблем относится к понятию логарифмической деформации. Скалярная логарифмическая деформации в ряде случаев полезна, но тензор логарифмической деформации обычно лишен смысла.
Бесплатно
Об обобщенной краевой задаче для линейных уравнений соболевского типа на графе
Статья научная
На геометрическом графе рассматривается краевая задача, где помимо условий непрерывности и баланса потоков, впервые вводится условие неподвижности в вершине графа, которое превращается в условие Дирихле, когда граф содержит одно ребро с двумя вершинами. При решении этой задачи сначала рассматривается соответствующая задача Штурма-Лиувилля, а затем полученные результаты применяются для решения задачи Коши двух линейных моделей, заданных на графе: уравнения Хоффа и уравнения Баренблатта-Желтова-Кочиной. Особенностью работы является и тот факт, что на каждом ребре графа задаются уравнения с различными коэффициентами, что вкупе с введением неподвижных вершин графа является впервые рассматриваемой задачей. Обе модели относятся к уравнениям соболевского типа, изучение которых переживает эпоху своего расцвета. Проведенная редукция этих уравнений к абстрактному уравнению соболевского типа позволила применить метод вырожденных полугрупп операторов. Найдено фазовое пространство решений методом фазового пространства, заключающимся в сведении сингулярного уравнения к определенному на некотором подпространстве исходного пространства регулярному уравнению. Полученные результаты теорем могут быть применены при рассмотрении обратных задач, задач оптимального управления, начально-конечных и многоточечных задач, а также при рассмотрении стохастических уравнений для моделей, заданных на геометрическом графе.
Бесплатно