Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика @vestnik-susu-mmph
Статьи журнала - Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика
Все статьи: 784

Статья научная
В статье проведено объединение идей слабого хаоса с экспериментально обнаруженными нелинейными свойствами оксигидратных гелевых систем.
Бесплатно

Единицы целочисленных групповых колец конечных групп с прямым сомножителем порядка 3
Статья научная
Получено строение единиц целочисленных групповых колец конечных групп типа A×Z 3, где A содержит центральную подгруппу порядка 3. В качестве примеров найдены группы единиц целочисленных групповых колец абелевых групп типов (9,3), (9,3,3) и (15,3).
Бесплатно

Статья научная
Экспериментально установлено, что совершенство кристаллов рубина и энергии излучения связаны с термодинамическими условиями выращивания кристаллов способом Вернейля, внедрением примеси титана и использованием шихты оксида алюминия α- фазы.
Бесплатно

Статья научная
Приводятся результаты расчетов электрического сопротивления углеродных нанотрубок (5,5) и (7,7) при механическом нагружении и интерка-лировании серой. При моделировании использовался формализм неравновесных функций Грина, совмещенный с теорией функционала плотности, реализованный в квантово-механическом пакете TranSiesta.
Бесплатно

Задача Конвея-Гордона для редуцированных полных пространственных графов
Статья научная
Работа посвящена исследованию графов, вложенных в трёхмерное пространство, которые получаются из полных графов удалением нескольких рёбер, инцидентных одной вершине. Для всех таких графов вводится аналог функции Конвея-Гордона. Доказывается, что её значение равно нулю для всех графов, полученных из полных графов с не менее, чем восемью вершинами. Также приводятся примеры графов с шестью вершинами, для которых значение этой функции равно единице.
Бесплатно

Задача Коши для неоднородных параболических систем в анизотропных пространствах Зигмунда
Статья научная
Рассматривается задача Коши для параболической системы второго порядка, удовлетворяющей условию равномерной параболичности в смысле И.Г. Петровского, с постоянными коэффициентами и ненулевой правой частью. Начальное условие также может быть отличным от нуля. Шкала гладкости решений таких систем строится в анизотропных пространствах Зигмунда, которые являются аналогом параболических пространств Гёльдера в случае целого показателя гладкости. Исследование свойств объемного потенциала для параболической системы проведено с помощью его представления через потенциал Пуассона. Оценки оператора, задаваемого потенциалом Пуассона, позволили установить оценки для объемного потенциала в параболических пространствах Зигмунда с весом. Полученные результаты используются для построения шкалы гладкости ограниченного решения задачи Коши для параболической системы второго порядка в весовых анизотропных пространствах Зигмунда.
Бесплатно

Задача Маркушевича в классе автоморфных функций в случае произвольной окружности
Статья научная
Предложен метод явного решения краевой задачи Маркушевича в классе автоморфных функций относительно фуксовой группы второго рода. Краевое условие задачи задано на главной окружности, из которой удалены все предельные точки группы. Получено решение задачи в замкнутой форме при дополнительном ограничении, наложенном на коэффициенты задачи: функция a(t)/(b(t) + l) аналитически продолжима в область Д_ и автоморфна относительно Г в этой области.
Бесплатно

Задача Неймана для нелокального бигармонического уравнения
Статья научная
Исследуются условия разрешимости одного класса краевых задач для нелокального бигармонического уравнения в единичном шаре с условиями Неймана на границе. Нелокальность уравнения порождается некоторой ортогональной матрицей. Исследованы существование и единственность решения поставленной задачи Неймана и получено интегральное представление решения через функцию Грина задачи Дирихле для бигармонического уравнения в единичном шаре. Сначала устанавливаются некоторые вспомогательные утверждения: приводится функция Грина задачи Дирихле для бигармонического уравнения в единичном шаре, выписывается представление решения задачи Дирихле через эту функцию Грина, находятся значения интегралов от функций, возмущенных ортогональной матрицей. Затем доказывается теорема о представлении решения вспомогательной задачи Дирихле для нелокального бигармонического уравнения в единичном шаре. Решение этой задачи выписывается с использованием функции Грина задачи Дирихле для обычного бигармонического уравнения. Приводится пример решения простой задачи для нелокального бигармонического уравнения. Далее сформулирована теорема о необходимых и достаточных условиях разрешимости задачи Неймана для нелокального бигармонического уравнения. Доказательство основной теоремы опирается на две леммы, с помощью которых удается преобразовать условия разрешимости задачи Неймана к более простому виду. Решение задачи Неймана представляется через решение вспомогательной задачи Дирихле.
Бесплатно

Задача Неймана для полигармонического уравнения в единичном шаре
Краткое сообщение
Получены необходимые и достаточные условия разрешимости задачи Неймана для однородного полигармонического уравнения в единичном шаре.
Бесплатно

Задача о распространении акустических волн в пористой среде, насыщенной пузырьковой жидкостью
Статья научная
В пластовых жидкостях во многих случаях присутствует газ. Например, газожидкостная смесь в пористой среде образуется при кислотных обработках низкопроницаемых зон, при водогазовом воздействии на пласты и т. д. Поэтому представляется актуальным учитывать присутствие пузырьков газа при изучении волновых процессов в пористых средах, насыщенных жидкостью. В настоящей работе теоретически исследуется распространение акустических волн в пористой среде, насыщенной газожидкостной смесью, с учетом межфазных сил взаимодействия между жидкостью и скелетом и теплообмена между газом и жидкостью. Записана общая система уравнений и физических соотношений, описывающая распространение волн в пористой среде, заполненной пузырьковой жидкостью. Получено дисперсионное соотношение, описывающее зависимость комплексного волнового вектора от частоты, на основе которого исследована зависимость фазовой скорости и коэффициента затухания от частоты для «быстрой» и «медленной» волн. Результаты расчетов позволяют оценить влияние пузырьков газа на распространение звуковых волн в пористой среде, насыщенной пузырьковой жидкостью. Кроме этого, результаты работы могут быть использованы при интерпретации данных акустического зондирования пористых сред.
Бесплатно

Задача о центральной продольной трещине нормального отрыва с наполнителем в полосе
Статья научная
Предложен способ решения задачи о центральной продольной трещине нормального отрыва с наполнителем в полосе. Для решения задачи использовано интегральное преобразование Фурье. Задача сведена к интегро-дифференциальному уравнению относительно функции, связанной со скачком вертикальных перемещений на берегах трещины. Приведены результаты численных расчетов, которые иллюстрируют влияние наполнителя трещины, толщины и упругих характеристик полосы на коэффициенты интенсивности напряжений.
Бесплатно

Задача оптимального управления для одной модели динамики слабосжимаемой вязкоупругой жидкости
Статья научная
Исследуется оптимальное управление решениями задачи Дирихле-Шоуолтера-Сидорова для системы уравнений движения жидкости Кельвина-Фойгта нулевого порядка, которую принято называть системой уравнений Осколкова. Рассмотрен случай вырожденного уравнения. Доказано существование глобального по времени единственного слабого обобщенного решения исследуемой модели в пространстве соленоидальных функций. Проведена редукция рассматриваемой модели к задаче Шоуолтера-Сидорова для абстрактного полулинейного уравнения соболевского типа. Доказана теорема существования оптимального управления слабыми обобщенными решениями задачи Шоуолтера-Сидорова для абстрактного полулинейного уравнения соболевского типа. Полученные абстрактные результаты применены к модели Осколкова.
Бесплатно

Статья научная
Получены достаточные условия разрешимости задачи стартового управления и финального наблюдения для одного абстрактного квазилинейного уравнения соболевского типа в слабом обобщенном смысле. На основе абстрактных результатов доказана разрешимость задачи стартового управления и финального наблюдения для модели Баренблатта-Гильмана. Данная модель описывает неравновесную противоточную капиллярную пропитку, искомая функция соответствует эффективной насыщенности. Особенностью рассматриваемой модели является учет эффекта неравновесности, что согласуется с постановкой задачи стартового управления и финального наблюдения.
Бесплатно

Статья научная
Исследуется стартовое управление и финальное наблюдение решениями задачи Дирихле-Шоуолтера-Сидорова для вырожденной системы уравнений Фитц Хью-Нагумо. Эта система относится к классу уравнений реакции-диффузии и описывает распространения волн в активных биологических средах, таких как сердечная мышца или мозговая ткань. Система уравнений Фитц Хью-Нагумо является, с одной стороны, развитием известной модели Колмогорова-Петровского-Пискунова, а с другой стороны - упрощением модели Ходжинса-Хаксли. При построении математической модели учитывая, что скорость одной искомой функции системы уравнений Фитц Хью-Нагумо значительно превышает скорость другой, было предложено исследовать вырожденный случай. Изучаемая задача стартового управления и финального наблюдения моделирует ситуацию, когда после кратковременного управляющего воздействие ожидается требуемый результат за некоторый период времени, т. е. в начальный момент времени посылается импульс большой мощности в систему нервов и ожидается требуемое состояние системы через некоторое установленное время. На основе методов Галеркина и компактности доказана теорема существования задачи стартового управления и финального наблюдения в слабом обобщенном случае.
Бесплатно

Задачи Коши и Гурса для уравнения 3-го порядка
Статья научная
Рассматриваются задачи Коши и Гурса для гиперболического уравнения 3-го порядка. Доказана теорема существования функции Римана и на основе этого построены решения задач Коши и Гурса.
Бесплатно

Статья научная
Рассмотрены детерминированная и стохастическая начально-краевые задачи для уравнения Дзекцера, описывающего эволюцию свободной поверхности фильтрующейся жидкости, в ограниченной области и гладкой границей. На границе области заданы условия Вентцеля и Робена, в качестве начального условия берется либо условие Шоуолтера-Сидорова, либо условие Коши. Отметим, что для изучаемой модели фильтрации рассматривается условие Вентцеля, которое не является классическим. За последние годы в математической литературе краевое условие рассматривается с двух точек зрения (классическом и неоклассическом). Поскольку начальные условия Коши и Шоуолтера-Сидорова изучались ранее в различных ситуациях, в работе, в частном случае классических условий Вентцеля и Робена методами теории вырожденных голоморфных полугрупп построены точные решения, которые позволяют определять количественные прогнозы изменения геохимического режима грунтовых вод при безнапорной фильтрации. В стохастическом случае использована теория производной Нельсона-Гликлиха. В частности, исследования поставленных задач в контексте краевых условий Вентцеля позволило определить процессы, протекающие на границе двух сред (в области и на ее границе).
Бесплатно

Закономерности формирования соединений углеродных нанотрубок на основе дефекта 5-7
Статья научная
Методами молекулярной механики рассчитаны структуры парных соединений zigzag-zigzag, armchair-zigzag, zigzag-chiral, armchair-armchair, armchair-chiral, chiral-chiral однослойных углеродных нанотрубок диаметром от 1,5 А до 5 А на основе комбинированного топологического дефекта 5-7. Установлены закономерности формирования структуры соединений нанотрубок, а также взаимосвязи между структурными параметрами соединений и относительным расположением топологических дефектов 5 и 7.
Бесплатно

Замечание о вычислении скорости волны Рэлея и производной определителя Рэлея в упругих средах
Статья научная
Существует много приближенных и точных формул для определения скорости поверхностных волн в упругих средах. Получено аналитическое выражение для скорости волны Рэлея через значения скоростей объемных волн, а также формула, позволяющая определить вычет в задачах возбуждения и дифракции поверхностных акустических волн в однородном изотропном упругом полупространстве, допускающих решение для полей деформаций и напряжений в виде квадратур. Вычислены значения скорости волн Рэлея и производной определителя Рэлея для некоторых сред по литературным данным. Полученные результаты могут помочь в получении аналитических выражений и позволяют уменьшить время расчета на этапе численного решения задач дифракции и возбуждения акустических волн.
Бесплатно

Замечание о формулах для скорости волн Рэлея
Статья научная
Представлен вывод выражения для скорости поверхностных волн на границе упругого полупространства (волн Рэлея) через значения скоростей объемных упругих волн. Получены обобщенные формулы Нкемзи и Малишевского. Приведено решение уравнения, выраженное через тригонометрические и гиперболические функции. Рассмотрены некоторые приближенные формулы.
Бесплатно